The cross sections used in TRANSP are theoretical cross-sections called "Duane Jarme". The original reference is

[1] DUANE, B.H., "Fusion cross section theory", in Annual Report on CTR Technology 1972 (WOLKENHAUER, W.C., Ed.), Rep. BNWL-1685, Battelle Pacific Northwest Laboratory, Richland, WA (1972).

This is also available in the NRL formulary:

(10)
$$n + Li^6 \longrightarrow He^4(2.1 \text{ MeV}) + T(2.7 \text{ MeV})$$

The total cross section in barns (1 barn = 10^{-24} cm²) as a function of E, the energy in keV of the incident particle [the first ion on the left side of Eqs. (1)–(5)], assuming the target ion at rest, can be fitted by 28a

$$\sigma_T(E) = \frac{A_5 + \left[(A_4 - A_3 E)^2 + 1 \right]^{-1} A_2}{E \left[\exp(A_1 E^{-1/2}) - 1 \right]}$$

where the Duane coefficients A_j for the principal fusion reactions are as follows:

	D-D (1a)	D-D (1b)	D-T (2)	D–He ³ (3)	T-T (4)	$_{(5\mathrm{a-c})}^{\mathrm{T-He^3}}$
A_1 A_2	46.097 372	47.88 482	45.95 50200	89.27 25900	38.39 448	123.1 11250
A_3	4.36×10^{-4}	3.08×10^{-4}	1.368×10^{-2}	3.98×10^{-3}	1.02×10^{-3}	I
A_4 A_5	1.220 0	1.177 0	1.076 409	1.297 647	2.09 0	0

The DD/DT cross-sections were upgraded to "Bosch-Hale", but the TT cross-section was not.