

The HRTS Density Discrepancies

Causal Analysis for JPN 80800 (c28b) – 87944 (c34) 18/10/2011 – 09/10/2014 and 87944 (c35) – 89485 (c36) 09/10/2014 –11/01/2016

H. Damm, J. Flanagan - 28/02/2022

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Motivation

 $\frac{80800 (c28b) - 87944 (c34)}{Consistency of T_e and n_e measurements in C31 presented by M. Maslov at DVCM 19.03.2014:$

EUROfusion O FUSENET

3/28

For NBI on and NBI off

n

 \rightarrow P,B,T(n,p) because people expecting some dependency in H-Mode \rightarrow ROG out of curiosity

Sector Electron Core Temperature T

80800 (c28b) - 87944 (c34)

We found a relation between Δ and T_0 (Te_core in the plots)

...which seems to be consistent.

 \rightarrow consistency supports the theory of a calibration error

NBI Heating Power P 80800 (c28b) - 87944 (c34) similar behaviour for Δ and P_{NBI} (averaged over pulse) deltaHRTS3 over P NBI - 10 bins 0.35 linear fit: linear fit: 1.866e-08 x + 0.01455 1.668e-08 x + 0.01472 Std∓0.03 0.30 0.25 0.15 0.20 Std=0.04d=0.03 0.15 Std=0.04d=0.0 < 0.10 Std=0.05td=0.03 0.10 Std=0.04 0.0 0.05 Std=0.03 0.00 Std=0.03 -0.05 0.00 -0.103000000 4000000 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 P NBI [W] P_NBI [W] BUT: deltaHRTS3 over P NBI - 100 bins, N=12.97 0.16 linear fit: 1.866e-08 x + 0.01455 0.14 - T₀ and heating power P obviously 0.12 (non-linear/linear?) related 0.10 not just NBI-heating heats up 0.08

0.06

0.04

0.0

0.0

-0.02

1000000 2000000 3000000 4000000 5000000 6000000 P NBI [W]

6/2

the plasma! → analyse of other heating sources on later slides

FUSENET

EUROfusion

FUSENET

EUROfusion (

slope Δ - P_{NBI} Plot / Δ -T₀ Plot slope \approx 10⁻⁴:

7/28

T_o and P_{NBI}

United

CCFE CULIAN ENERGY T₀ and P_{NBI} & Evolution of Δ over JPN 80800 (c28b) - 87944 (c34)

Linear relation between Δ , P_{NBI} and T₀:

- continue with analysis of P because "direct controllable" variable
- \rightarrow T is not direct controllable, but depends direct on P
- additionally, effect first seen when P_{NBI}>0
- $\rightarrow P_{\text{NBI}}$ for analysis of 80800 (c28b) 87944 (c34)

Evolution of Δ over JPN:

- more recent pulses (87944) seemed to have less Δ but in general Δ increased over JPN
- \rightarrow plot Δ over JPN

(dataset begins at 2010 Torus Hall Optics calibration)

- decalibration (dirt?) over time $\rightarrow \Delta$ increases
- much better since 2015 calibration after JPN 87944 (red line)

Power normalised Δ

80800 (c28b) - 89485 (c36)

• Δ/P_{NBI} much smaller after 2015 Torus Hall optics calibration

10/28

Old and New Data Discrepancy NBI

80800 (c28b) - 89485 (c36)

• (pre-87944 slope) = 1.7 x (post-87944 slope):

Suggested Recalibration NBI

recalibration of JPN 86000 – 87944:

EUROfusion (

FUSENET

→ from 8.96% to 5.68% n_e HRTS discrepancy from n_e KG1V (no effect for NBI off!)

12/28

80800 (c28b) - 89485 (c36)

Suggested Recalibration NBI

• Δ for NBI 86000-87944 with old and new calibration

80800 (c28b) - 89485 (c36)

CCFE If it was just calibrational...

80800 (c28b) - 89485 (c36)

- ... similar behaviour for all other sources would be expected.
- → analogue findings for ICRH (LHCD, OHM to less data)!
- \rightarrow slope approx. the same 0.3 for P_{NBI} < 2MW but minor 0.2 general effect due to less available heating power NBI 0.10 ICRH linear fit: -0.1 4.035e-08 x + 0.006724 linear fit: 1.668e-08 x + 0.01472 -0.2 linear fit: 4.778e-08 x - 0.002783 for P_{NBI} < 2 MW -0.3 L 500000 600000 700000 3000000 1000000 4000000 -0.05 4.778e-08 x - 0.002783 for PMP P [W]
- → very likely the reason why ∆ was first seen for NBI and assumed as pure NBI effect

FUSENET

EUROfusion (

Secrepancy ICRH Construction Co

- 80800 (c28b) 89485 (c36)
- (pre-88000 slope) = 3.2 x (post-88000 slope)

80800 (c28b) - 89485 (c36)

- recalibration of JPN 86000 88000:
- \rightarrow after all 1,44% improvement for ICRH

Suggested Recalibration NBI

80800 (c28b) - 89485 (c36)

• Δ for ICRH 86000-87944 with old and new calibration

EUROfusion (

Electron Core Density n₀

80800 (c28b) - 87944 (c34)

United

• dependency of n_0 on Δ (?)

 \rightarrow but n₀ ~ P:

-E Plasma-Magnetic Pressure Coefficient β_{MHD}

- some β relation between Δ
- BUT if P (and therefore T) increases B needs to increase for stable plasma (stable β <1)!

80800 (c28b) - 87944

 nk_BT

 \rightarrow relation non-linear

CFEPlasma-Magnetic Pressure Coefficient β_{diamag}

United Kingdom Atomic Energy

80800 (c28b) - 87944 (c34)

• Same for β_{diamag}

→ BUT again β ~P:

- more cloudish behaviour than clear trend for ROG
- and hotter plasmas should stay away from the wall!

 M. Maslov, "Consistency of T_e and n_e measurements in C31", DVCM, 19.03.2014

Discussion and Backup slides ;)

United

CCFE BACKUP Δ/T₀ for JPN 80800 – 89485

United

• some dependency of p_0 on Δ as well

Electron Core Pressure p₀

80800 (c28b) - 87944 (c34)

27/28

Secre All Parameter P dependencies

Normalised on maximum Value

