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1. Introduction 

The plasma equilibrium problem has been discussed extensively in connection with controlled 
thermonuclear fusion in toroidal magnetic systems. Solutions of this problem allow one to obtain 
feasible plasma configurations and external electrical currents needed to provide equilibrium 
control. The exact description of equilibrium configurations is necessary to study their MHD 
stability as well as transport processes for particles, energy and magnetic fields. 

In axisymmetric systems the search for equilibrium is reduced to the solution of the two-di- 
mensional elliptic Grad-Shafranov equilibrium equation with a quasilinear right-hand side [1,2] 
for the so-called flux function Ic/( Y, 2). The isolines 1c/( r, z) = const yield cross sections of the 
magnetic surfaces in a plane (Y, z). The mathematical problems arising here have some specific 
features. In their various statements, a free boundary and an infinite region may occur. In the 
problems of physical interest, the equilibrium equation, due to its right-hand side, becomes a 
nonlinear and integro-differential one [3,4]. One needs to know the geometry of the magnetic 
surfaces with high accuracy for a subsequent analysis of the equilibrium configuration stability 
and simulation of transport processes. 

The analytic investigations of plasma equilibrium in magnetic fields yield only qualitative 
results [2]. Extensive and thorough analysis of possible equilibria, and the optimization of specific 
installations require the use of computerized techniques. The traditional and most versatile 
numerical techniques are based on approximation of an equilibrium equation of a fixed grid in 
the plane (r, z) [5,6]. Such algorithms involve a tiresome procedure of constructing the mapping 
lines \c/( Y, z) = const. Therefore they are not optimal from the viewpoint of using the results for 
the stability and evolution problems. 

Recently, an approach has proved useful for constructing equilibrium computation algorithms 
allowing one to obtain magnetic surfaces (being nested) in an explicit form. It is based on 
introduction of natural (flux) coordinates (a, 0) [2,7,8] such that the basic variable a (“radius”) 
is constant on the isolines $( r, z) = cons& and the auxiliary variable 0 (“angle”) is constant on 
some curves coming out from the extremum points of $( Y, z) - the magnetic axis. There is a 
wide arbitrariness in a choice of a and especially 0. With the aid of the replacement (r, z) + 
(Q, O), the original equilibrium problem may be formulated straightforwardly for the coordinates 
of the magnetic surfaces Y( a, 0) and z( a, 0). Such a replacement will henceforth be called the 
variable inversion. Three numerical techniques are used now to implement the above approach. 
In the first one Y( a, O), z( a, 0) are searched for as a series in a chosen system of functions with 
coefficients depending only on a. A set of ordinary differential equations for the coefficients is 
obtained from the variational statement of the equilibrium problem [2,9-111. Their complex 
nonlinear structure restricts the number of series terms. The second technique consists in multiple 
computations of the elliptic equilibrium problem on successive grids that are constructed on 
isolines of $( r, z) and irregular in (r, z) [12,13]. This technique goes along with the traditional 
ones and requires no less computational times. Finally, the third method, the inverse variable 
technique, is based on a direct (a, @)-approximation of the first-order nonlinear system of 
equations equivalent to the original equilibrium problem [14-191. It has successfully been used 
for solving the applied MHD equilibrium problems [20-271. 

This paper deals with a detailed discussion of the inverse variable technique and its application 
to elliptic plane problems which include, in particular, the search for symmetric equilibrium 
plasma configurations. 
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In section 2 typical formulations of equilibrium problems are considered for axisymmetric 
systems. The inverse variable procedure for the Dirichlet problem using quasipolar (O( r, z) = 
const are straight lines) and quasiorthogonal (a( r, z) = const, O( r, z) = const are orthogonal) 
coordinates are described in section 3. The quasipolar coordinates for a numerical method based 
on the variational formulation of the 3-D MHD problem were earlier used in ref. [28]. The 
equilibrium problem in flux variables is formulated in section 4, and the respective computation 
algorithm is discussed in sections 5 through 7. In section 8 some exact solutions of the 
Grad-Shafranov equation are given that are later used as tests. In section 9 the testing results are 
presented to describe the accuracy of the quasipolar coordinate inversion. Also, computational 
examples for various equilibrium problems are given to illustrate the algorithm performance. 

2. Axisymmetric MHD-equilibrium problems 

2.1. Equilibrium equation 

The plasma equilibrium is described by the one-fluid ideal MHD equations 

vp=jXB, j=vXB, v*B=O, (2.1) 

where p is the gasdynamic plasma pressure, B is the magnetic field induction, j is the electric 
current density. In the axisymmetric case the system (2.1) may be considerably simplified yielding 
the well-known Grad-Shafranov equation [l] for the flux function 

(2.2) 

Here (r, (p, z) are cylindrical coordinates, &,(r, 1c/) is the current density projection onto the 
toroidal direction. For equilibrium configurations it follows from (2.1) that the toroidal surfaces 
4 = const coincide with the magnetic, isobaric ( p( 4) = p) and flux (f( #) = f) surfaces. In this 
case 

B= 0+x vqJ+fvq, 

j=vfxv~+rj,v~, 

where 9 and I: are the poloidal field and current fluxes with respect to the symmetry axis r = 0. 
Thus the axisymmetric plasma MHD-equilibrium is determined by the solution of the 

quasilinear elliptic eqs. (2.2), (2.3). Now let us consider the ways of giving the functions p(#), 
f( JI) and boundary value conditions. 

2.2. Equilibrium problem with given p( I/J), f ( 4) 

Let the plasma (D,, rP = C%+,) be maintained by an ideally conducting wall (r,) separated 
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Fig. 1. 

from it by a vacuum region 1(2, (fig. la). Then, by giving some p( 4) and f( $), we have due to 

(2.3) 

The wall r, and the unknown plasma boundary lYP are obviously magnetic surfaces so that 

$(r, z)=&=O, (r, z)Era, 

#(r, 4 = 4+ (r, z> E rP. 
(24 

The value of $J, is defined by giving the limiter ( rP, zP) E r,, 

#, = dr,, z,> (2.5) 

or the relation 

$A/%mx = a < 19 (2.5’) 

where #,, is the value of $(r, z) on the magnetic axis (P, zm) with 04 = 0. If the surface 

current is absent at the plasma boundary the solution is continuous together with the normal 
derivative 

[a#/an] = 0, (r, Z) E rp. (2.6) 

2.3. Equilibrium problem with given p( $), q( 4) 

When studying the quasiequilibrium evolution of the toroidal plasma another formulation of 
the equilibrium problem is widely used, the mathematical nature of which considerable differs 
from the above one (2.2)-(2.6). For example, during the evolution of an ideally conducting 
plasma with the given time dependent pressure function p(#, t) the magnetic fluxes are 
conserved due to the frozen-in field condition. Hence, the conservation condition extends to the 
poloidal flux 

(2.7) 
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and the distribution of the safety factor over the magnetic surfaces 

q(#) = -da/d*, 

where @ is the toroidal flux through the cross section $ = const. According to the definition of 

f(G), 4(G) we have 

the integration being over the area of the toroidal surface # = const. 
Thus the considered evolution requires the solution of the equilibrium problem (2.2)-(2.8) at 

each instant for the known functions p( 4, t) and q( JI). Let us consider some specific features of 
this problem. By introducing the averaging over the volume V( 4) between “adjacent” magnetic 
surfaces 

we obtain 

fW= -4722q(J/) 5 -l$, ( ) 
and (2.2) in the form of the nonlinear integro-differential equation 

(2.9) 

Averaging (2.9) yields 

-&[( ~)~j+16”‘4~(q( -L#& _cL& 

From this it is seen that in order to obtain a unique solution of eq. (2.9) one should give SC/,,, in 
the condition (2.7) or some other value, e.g. 

d+/dV= -X, V=O, (2.7’) 

corresponding to the toroidal field given on the magnetic axis. Note that it is the second term in 
the operator of (2.9) that is dominant. This must be taken into account when constructing the 
algorithms for numerical solution of the above equilibrium problem. 

2.4. Adiabatic equilibrium 

Consider the adiabatic evolution of the equilibrium plasma configuration. Let N( #) be the 
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number of plasma particles in the volume V( $). Then the density is given by 

dN dN d# ++-=-- 
dV d# dV 

and, hence, due to adiabaticity with the exponent y, the pressure is given by 

(2.10) 

As a result the adiabatic equilibrium problem is reduced to the solution of (2.2)-(2.7), (2.10) 
for the given distributions f( 1c/) and q( $J). Like in the case of the known p( #), q( $) it is quite 
obvious that the condition (2.7) must be given if (2.2) is rewritten in the form of an integro-dif- 
ferential equation (called the generalized one in ref. [4]) 

v*(+~)++(-~i’= -$y& (6 z)ap. 

2.5. Equilibrium in an external field 

From the practical viewpoint, the problem of the plasma equilibrium being maintained by the 
given field of external circular currents Ji, J2, . . . , JK with the coordinates 

(4, Z,), (R,, Z,), . . . ,(Rm Z,) is of most interest. In this case it is convenient to search for 

rCl(r, z) in the form 

where #i( r, z) corresponds to the plasma currents (the inherent plasma field) and JI,( r, z) to the 
currents in external coils. 

The Green’s function for (2.2) in an infinite region is 

G( 
w 

r, z; r’, z’) = - 
Tt 

K(t)-E(t) , 1 
t2 = 4rr’ 

(r+r’)2+(z-zZI)2’ 

where K(t), E(t) are the first and second kind elliptic integrals, respectively. Then 

qe(r, z) = f J,G(r, z; Rj, Z,), 
j=l 

(2.12) 

(2.13) 



L.M. Degtyarev, V. V. Drozdov / Inverse variable technique 

and the function #i( r, z) satisfies the equation 

(2.14) 

Here the region occupied by the plasma 9, is determined by the inequality 1c/( r, z) > ‘c/r. The 
boundary conditions (2.4)-(2.6) should be supplemented by the condition that the solution 
vanishes at infinity and on the torus axis 

r2+z2+ 00, r+o. (2.15) 

Thus the external field equilibrium problem under the given p( a/) and f( J/) is reduced to the 
solution of (2.14), (2.11)-(2.13), (2.4)-(2.6), (2.15). In the case of the known p(4) and 

q(IC/)(f(+), rl(JI)) one should additionally give condition (2.7). 
Now we give an auxiliary expression for the flux function ~i( r, z) of the inherent plasma field, 

and we shall use it when constructing the computational algorithm. By applying the generalized 
Green’s formula to the function $( r, z) = a/.~ (r, z) - ‘c/, the volume integral 

Gi(r, z)=JJ, G(r, z; r’, z’)&,(r’, #)dr’dz’ (2.16) 
P 

may be reduced to the contour one 

Jli(r, z)= -L $t$G(r, z; r’, z’)d.s’ 
P 

+77k Z)(e-Y 4 -Q 

i 

1, b, 4 E 52, 

q(r, z)= 0.5, (r, z) E rP 

0, (r, ZFJZ, u rP’ 

where n is the external normal to the boundary 

2.6. Calculation of the external confinement field 

(2.17) 

Together with the above direct problem of equilibrium in an external field, where I,!J( r, z) is 
determined for the given currents J,, an inverse problem is also of interest. The latter consists in 
searching for the given currents JI (and generally their positions) that would provide an 
equilibrium configuration with the given form of cross section and distributions p( #), f( 4) or 
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p( 4) and q( 4). Inverse problems of such kind may be treated in terms of optimal control 
described by a nonlinear elliptic equation [29]. 

Now, it is required to find the control J = ( J1, J2,. . . , JK) E EK provided that the plasma 
occupies the region close to 52, whose boundary r is called the control contour. Formally it 
means 

Let $( r, z; J) be the solution to the direct problem of equilibrium in an external field, ( T~z,), 
s= 1, 2,..., m are the observation points on r. Then the discussed inverse problem may be 
considered in the variational statement 

W(J) = 2 us[ \cI(rs’,, zs; 
K 

c S/J: + s,#; , 1 (2.18) 
s=l I=1 

W(J,)=min W(J), JEE,, 

where E, is a set of admissible controls a,, S, and 6, are weight functions. From the 
terminological viewpoint [29] (2.18) is the problem of the one-point control with boundary 
observation. 

Note that the optimal control problem (2.18) is ill posed, and therefore the need for 
introducing a stabilizing functional is obvious enough. The multiplier (Y plays here the role of the 
regularization parameter [30]. The value #, may also be varied and found from the minimum 
condition for W( J, #,). 

3. Inverse variables in elliptic plane problems 

3.1. Inverse variables, a governing equation 

In this section a version of the inverse variable technique is proposed for application to elliptic 
plane problems. The search for equilibrium in symmetric plasma configurations is reduced to the 
solution of these problems. 

Let 52 be a confined region in the plane with boundary aa. Consider the 
with a homogeneous boundary condition for the quasilinear elliptic equation 

Dirichlet problem 

(3.1) 

u(x) = UO, x E an. (3 -2) 
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Let the solution of (3.1), (3.2): (1) exist and be unique; (2) have an unique extremum urn at an 
internal point xm E 1(2 so that u(x) possesses nested contours. Without discussion of require- 
ments on the input data of the problem (3.1), (3.2) we note that it allows introducing an analog of 
the polar coordinates connected to the solution. 

We introduce new independent variables by performing the smooth nonsingular transforma- 
tion (x1, x2) + ([r, t2). Then eq. (3.1) turns into 

ax, * 

h,,=a,, a5, +2+~24&3+~22($9*7 
( ) 

(3.3) 

(3 4 

act,, t2) = ax, ax, axI ax2 -’ 
J= a( i 

----- 
x19 x2) ) x1 x2 at2 36, . 

Let (&, t2) = (a, @> b e an analog of the polar coordinates with an origin at a point zm E Ic2 so 
that a E [0, (Y,,) is “a radius”, and 0 E [0, O,,) is “an angle”. Then besides the boundary 
condition (3.2) and the O-variable periodicity conditions one should require for eq. (3.3) the 
regularity of solution for a = 0: 

h,,~+h12~ 

Let the variable a uniquely depend on the solution of the original problem 

u(u) = u” + k/amrxv( u’)du’. 
a 

Here Y(U) > 0 is the given function, and k is an unknown constant, 

k=(um- u”)/~um’xv( u’)du’. 

(3.5) 

(3 -6) 

(3.7) 
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The choice of Y(U) is determined by the problem’s nature. In the simplest case V(U) = l/a,,,, 
then 

u(u) = (Urn - uO)(l - a/u,,) + u”. 

We give the function O(x) at the boundary of the region x = x’(O), x E aa and choose it to be 
monotonically increasing from 0 to O,, in the counterclockwise direction. Moreover, an 
additional restriction must be imposed on the function O(x) to determine its unique choice. 
These restrictions specify a version of the inverse variable technique. Note that in the replace- 
ment (x1, x2) + (a, 0) the original region 52 is mapped into the given rectangle 9’ = [0, a,,_) X 

[0, O,,,,,) and the Jacobian J > 0. 
Let us formulate the problem (3.1), (3.2) in variables by assuming the functions xi( a, 0) and 

the value k to be unknown. Consider the auxiliary function 

ah4 0) GY 0) = - qx,, x2) = -gJ=kv(o)J(u, 0). 

Due to (3.6), 1(u, 0) satisfies the equation 

(3.8) 

with the boundary conditions 

h,,l=O, u=o, 

I(u, 0 + o,,) = I(u, 0). 

For xi( a, 0) by taking into account the definition I( a, 0) we obtain the equation 

(3.9) 

(3.10) 

a(xl, xd = kvI-’ 

ah @> 
(3.11) 

which must be supplemented by the condition for choosing O(x). An obvious consequence of 
(3.11) is 

vhf) 
ff)m’X I(u,, @,) du’d@’ 1 

-1 

, (3.12) 

where S(u) is the area of the region r(2, E 1(2, bounded by isoline u(x) = const. 

3.2. Quasipolar coordinates 

Let us call the inverse coordinates the quasipolar ones if O(x) = const on the rays outcoming 
from the extremum point xm. Due to this 

x,(a, O)=x,“+p(a, O)[xg(O)-x7]. (3.13) 
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For 0 < p( a, 0) G 1 the function p( a, 0) is monotonic in a, for which 

p(0, 0) = 0, p(umax, 0) = 1. (3.14) 

Note, that introduction of quasipolar coordinates is possible only when any region 0, E D is 
star-wise with respect to the extremum point x”‘. By substituting (3.13) into (3.11) we obtain the 
equation for p(a, 0) 

2k v i3p2 

&l 
--xp (3.15) 

Abm, x0)= 

From the two conditions (3.14) we shall keep the first one as a boundary condition for (3.15), 
namely 

p(0, 0) = 0 (3.16) 

and the second one is used to eliminate the constant: 

k = 0.5A(xm, x”)[ crn”;du] -I = const. 

Finally we obtain 

(3.17) 

(3.18) 

Thus the problem (3.1), (3.2) is reduced to a nonlinear system of two first-order equations: eq. 
(3.8) with the conditions (3.9), (3.10) and eq. (3.18) with the conditions (3.16), (3.17). The 
solution determines the point xm, the function p( a, O), and hence, the coordinate lines xi( a, 0). 

Note that the following generalization is possible. The above approach may be used for the 
Dirichlet problem in the doubly connected regions 9. Let U(X) satisfy (3.1) in D and the 
boundary conditions 

u(x) = 240, x E ad-lo, 

u(x) = Urn > 240, x E aam, (3.19) 

where aOo, a1(2” are the external and internal boundaries of 9. We introduce the variables (a, 0) 
so that the isolines O(x) = const should be nonintersecting straight lines that connect the points 
x0(O) and x”(0) on the contours aGo, i3am. As before, the function p(u, 0) is determined by 
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the equality (3.13). For it the equations and conditions (3.15)-(3.18) are valid with 

I+I= (@)I, 

a( x; - .g) 
A-ii=(+$“) ao -(x;-xP)y-$, 

j3 x1 -xi”, x2 - $7 
qu, 0) * 

(3.20) 

The regularity condition (3.9) for (3.8) is replaced here by 

I(a, 0) = kv(O)J(O, 0). (3.21) 

The value k in the problem (3.1), (3.19) is known and given by the equality (3.7). 

3.3. Quasiorthogonal coordinates 

We shall call the inverse coordinates the quasiorthogonal ones if the function O(x) satisfies the 
equation 

2 au ao au aa_, 
Yax,ax,+ax,ax,- ’ 

(3.22) 

where y(x) # 0 is a certain given function. Specifically, at y(x) = 1 the isolines a(x) = const and 
O(x) = const are orthogonal. Note that if the solution U(X) 
coordinate lines O(x) = const are determined by the equation 

is known then due to (3.2) the 

d-Q i au au -1 -=-- 
dx, L-1 Y* ax, ax, 3 

with the condition x = x0( 0) at the boundary &?. Eq. (3.21) in the inverse coordinates takes the 
form 

I ax, ax, ax2 ax2 --- 
Y aa ao +Yaaas=o, 

From this it follows for ~,(a, O), i = 1, 2 

8x1 ax2 ax2 I ax, 
P,,=YmV CL,,= -yjp 

where p( a, 0) with involvement of (3.11) is connected with I( a, 0) by the equality 

P=g(~)z+Y(qJ 

(3.23) 

(3.24) 
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or 

(3.24’) 

The boundary conditions for (3.23) are coordinates of the boundary i3fi and the O-periodicity 
conditions 

d?mx~ 0) =x;(o), 

Xi(“, 0 + O,,) =Xi(U, O), i = 1, 2. (3.25) 

Besides, at the extremum point x(0, 0) = x”’ eqs. (3.23) degenerate and reduce to the regularity 
conditions 

paxJaa=O, a=O, i=l,2. (3.26) 

Thus, like the case of quasipolar coordinates the original problem (3.1), (3.2) is reformulated in 
the form of a nonlinear system of first-order eqs. (3.8)-(3.10), (3.23)-(3.26). 

For a numerical solution it is expedient to transfer from the Cauchy-F2iemann system (3.23) to 
the two elliptic equations 

(3.27) 

In order for this approach be adequate it is necessary to conserve eq. (3.23) as the boundary 
condition for (3.27) at fixed a = a,. 

In closing this section we shall make two remarks. First, a choice of the function u(a) may be 
implicit. The instead of (3.6) the function kv( a) = -du/da is determined from an additional 
condition. For example, if a coincides with the area S(U) inside the isoline U(X) = const then 

dS 

-=l=-da 0 da 
d” jem”‘fd@_ 

Second, sometimes it is expedient to transform the initial system of coordinates (xi, x2) into 
the new one ( yi, y2) and then to inverse the variables ( yi, y2) + (a, 0). The level lines 
O(x) = const will have the form of the given curves outcoming from the point x”’ = x( y”). 

Equilibrium equation in flux coordinates 

For the equilibrium problem (2.2), (2.3), by going over to the functions 

4+W, f+Rf, 



356 L. M. Degtyarev, V. V. Drozdov / Inverse variable technique 

where R is the characteristic torus radius, we have in terms of (3.1), (3.2) 

(Xl, x2) = (6 4, u=rc/, 

a11 = a22 = R/r, ~1,~ = u21 = 0, 

f(x, u)=jq(r, +)= 
r dP i R df2 
R drC/ 2r d# ’ ‘J’p<‘J’<‘J’max 

For given p(#) and q(+),_owing to (2.8), we have 

fW=&b)( $)-1. max 

(g) = +/@m’xg(u, O)dO. 
max 0 

Now, we introduce the factor characterizing the equilibrium problem 

i 

1, ~(44, f(4) are given; 
K= 0, P(#), 0) aregiven. 

By taking into account (4.1)-(4.3) eq. (3.8) for the function 

I= -a(#, @)/a(r, z) 

will have the form 

= (u,@>Eq_ 

(u, 0) E a:, 

(4.1) 

(4.2) 

(4.3) 

(4.4 

where L?; = [0, up) X [0, O,,), & = (up, urnax) X [0, O,,) are the mappings of the regions 
occupied by the plasma tip and the vacuum layer Q2, (fig. lb). At the plasma-vacuum boundary 
rp, which is mapped into the straight line a = up, the condition for continuity of the normal 
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derivative of solution (2.6) turns into 

[I]Pp=I(a,+O, 0)-I(a,-0,0)=0. (4-5) 

The value up is determined by the conditions (2.5) or (2.5’) and (3.6). If on the edge magnetic 
surface of the plasma there is a surface current, then (4.5) should be replaced by the total 
pressure balance condition 

[ p + +I?*] f, = 0. 

In this case since 

,--_W@ 
an -37 B=R(V@wq+fVqJ) 

we obtain 

Here the derivative along the magnetic surface 

and the coordinate r( a, 0) are continuous at the plasma boundary r,; the discontinuities [p],,, 
if *Ia, are assumed to be given. As it has been noted in section 2.3, for eq. (4.4) (considering 
~,(a, 0) to be given) at K = 0 a condition on the magnetic axis a = 0 is required in addition to 
(3.9), (3.10). Such a condition can be obtained from (2.7) which according to (3.6), (3.7) is 
equivalent to giving the value k. Therefore by taking into account the definition of I( a, 0) we 
have 

($=kv(+ a=O. (4.6) 

5. Iterational process of the inverse variable algorithm 

The formulation of the problem (3.1), (3.2) in the form of a nonlinear system of two first-order 
equations raises a question on the method of its solution. In this section, remaining within the 
framework of a differential problem we shall discuss a natural two-stage iteration process. At the 
first stage by starting from the approximation $‘( n, 0) the function P1( a, 0) is obtained from 
eq. (3.8) for fixed coefficients and the right hand side. The second stage consists in determining a 
new approximation xl+r(u, 0) f rom respective equations for the obtained P+*( a, 0). Here we 
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shall restrict ourselves to the case of inverse quasipolar coordinates which has been developed to 
date in detail. As to the orthogonal coordinates, the details concerning one of the first algorithms 
for the implementation of the inverse variable technique may be found in ref. [17]. In this case 
the iterational process considerably complicates at the first stage due to the structure of equations 
for the functions x,(u, 0). 

5. I. Successive approximations in doubly-connected region case 

We first discuss the iterational process for the Dirichlet problem in the doubly-connected 
region 9. Let xf( a, 0) be known on the iteration with superscript n, i.e. a family of coordinate 
lines a”(x) = const, en(x) = const is given in 9. We shall search in the rectangle Ic2’ = [0, urnax) 
X [0, O,,) for a solution of the problem corresponding to (3.8), (3.10) (3.21) that is given by 

Lflw”+i _ Dn,@+i = f n, 

wn+l(o, 0) = h(O), 

wn+yu, 0 + o,,) = wn+‘(a, O), 

where 

W n+l = I”+‘/J”, 

(54 

f” =f (x% @), ~W), 

Lw=J[~(h,,Jw)+&(h,,Jw)]. (5 4 

The summand Dw in (5.1) has the sense of 
problem) and may be chosen in the form 

a regularizator (the artificial viscosity in a difference 

a2 aw 
Dw=Jaaa@ aJ= ’ 

i 1 
a = Cy,d(x’, x”)d(x, x”‘), (5.3) 

db, u) = \i(x, -Y~)~+(x, 7~2)~ 3 

a0 = const. 

Since the problem is considered in the doubly-connected region the value k is known and given 
by equality (3.7). 
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Thus, from (5.1)-(5.3) we obtain In+’ =.Pw”+‘. We note that the function ~“+‘(a, 0) 
depends, in general, on the angular variable 0. The iterational process is aimed at such 
redetermination of coordinate lines ~:(a, 0) that would provide the limiting equality 

w”(a, 0) + w(a)=kv(a). (5 *4) n+oc 

Indeed, at the limit (5.4) for the function 

u(u) = u” + J 
aIn*. 

w( u’)du’ 
n 

we have 

Lw = -2.4, 

Dw= -J&a@ +J&)=O 

and, hence, 

s?u= -f, 

i.e. u = u(u(x)) is the solution of the problem (3.1), (3.19). 
Now we shall go over to the second stage of iterational process - the determination of p( a, 0). 

By substituting In+’ (a, 0) into (3.18), (3.20) we obtain 

a( pn+y2 
au =+i o [I amax y 

jzTdu 1 
-1 

’ 

J 
I J:In+l= n+l 

-n-k1 =_ 2w 

Ai3( /?“)2/au ’ 

or as the final result with involvement of the boundary condition (3.16): 

w+1)2 +z+l v W)‘) -- 
au n+l au 

$I+1 (0, 0) = 0, 
W 

From (5.5) we obtain #‘+‘(a, 0) 
x:+1( a, 0). 

and then, according to (3.13), the new approximation 

Let us show that the limiting equality (5.4) is satisfied at the convergence of the iterational 
process, so it means that the latter provides the solution of the problem posed. Really, if 
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iterations converge, then from (5.5) for any a E [0, urnax), including a = 0, it follows 

From this, by taking into account the boundary condition (5.1), we have 

p”+‘(O); + 1. 
n-+cQ 

From the last two equalities we obtain (5.4). 
Note that for the problem in the doubly-connected region, when transferring to a next 

iteration only the isolins a”( X) = const are reconstructed while the rays O(X) = const are 
conserved. 

5.2. Iterations in the singly-connected region case 

We generalize the above iterational technique for the problem (3.1), (3.2) in the singly-con- 
nected region D when coordinates of the extremum xrn and the solution urn at it are unknown. 
By assuming that &‘+‘(a, 0) = ~~‘+‘(a) for 0 -C a -C E eq. (5.1) is averaged in 0 here. We obtain 
the problem 

&(h;,J”)w:+‘=(f”,J”), O-=U<C 

( h;lJ”)w:+’ = 0, a = 0, 

where 

(5 4 

(‘p) = &/“-?p( a, O)dO. 
max 0 

The solution (5.6) for E -C a -C amax and the solution (5.1) with the boundary condition w”+r(~, 8) 
=w J+l(e) yields 

As above we then determine p”+’ (a, 0) and xl+‘( a, 8) where the coordinates of the extremum 
(xm)“+l may be found from the equality 

(5.7) 
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Here 

Jn+1/2 = fA[(x”)“, x”] a(‘;;‘)2 

I 

-‘_ 

Finally, k”+’ is obtained from formula (3.12) as 

?I+1 = s( amax 
amrx em,, ‘[J / v -1 

k --dad@ , 
0 0 In+l I 

(5.8) 

so that 

u”+~(u) = u” + k"+' aamaxv( a’)da’. 
I 

If this iterational process converges at the fixed E then the limiting relation (5.4) is satisfied as 
before. By tending c to zero we obtain in the limit the solution U(X) of the problem (3.1), (3.2) as 
coordinates of its level lines. 

6. Difference approximation 

In the rectangle Sz’ we introduce the grid WE, = 

( a; = Qi_i + hf_ l,2,1<i<N, uo=O, uN=umax; 

Oi = Oj-i + hf-1,2, l~jdM,@o=O,@M=O,,). 

In the plane x the grid zji corresponds to an irregular quadrangular grid Wh = { Xij = X( Ui, @j)}. 
On Wh we consider the grid problem 

9huh= -fh, xEo, 

l+=uO, x f %, 
(6.1) 

that approximates (3.1), (3.2). 
A discrete analog of the variable inversion described in section 3 is as follows. It is required to 

find the grid iZ,, (topologically equivalent to a radial circular one) such that the solution of 
problem (6.1) on it should not depend on the index j and must satisfy the condition 

N 

uh ~ Ui= U” + k C v,_1/2h:_1/2. 
I--i+1 

(6.2) 

The approximation of a nonlinear system of eqs. (3.8)-(3.10), (3.16)-(3.18) is constructed in such 
a way that it is algebraically equivalent to the problem (6.1), (6.2). The solution of the difference 
scheme obtained may be found by using the iteration technique from section 5. 
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6.1. Variational-difference scheme in the Dirichlet problem 

The scheme (6.1) is constructed by applying the variational principle [31] as follows: 

min Q(u) = a(~), u E ii/:( 

Using the coordinates 5, = a, t2 = 0 the functional (6.3) is 

- 2uf J-‘dW2. ) 
By turning to the grid functions oh we approximate (6.4) as 

~~(~~i=~{(~~h~,J~l~[~~]~-~[L/j*)~);_lj2j_l,2. 
i,j k.1 

(6.3) 

(6.4) 

(6.5) 

Here b~l~,~-~,~,j-~~2 is the approximation of cp(a, 0) at the center of a rectangular cell 

'2:-1/2j-I/2 with apexes (i, j; i - 1, j; i - 1, j - 1; i, j - 1). Now we divide s21_1,2,j_1,2 into 

four triangles pair-wise and give the apexes at direct angles the index S = 1, 2, 3, 4, respectively. 
With regard to (3.4), we assume 

[pq] h = o*25&i& 
s 

The difference variables (6~/6() ’ are determined in the usual way; for example, for s = 1 

(6.6) 

Note that by using the approximation technique (6.6), the summation in (6.5) depends only on 
coordinates of apexes of the curvilinear quadrangle Lni_-1,2, j_1,2 (geometry of the grid Zs,) and 
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the grid function u,,, fh at the apexes. The steps hf_,,,, h:_1,2 
characterizing the grid iZ;l in (6.5), 

(6.6) are practically absent, for the fixed 7jh they may be given an$z vatues. Consequentry~ the 

a~~~o~~at~on @&fuh) is consistent formally with both forms (6.3) and (&4) of the initial 
functional a(u). The difference scheme (6.1) is obtained by minimizing the quadratic functional 
(6.5) &!$ It may be written in the form corresponding to eq, (3.3) as 

(W~2)i+~/z,j+w +(hll~h~~~*~~~,~-~,~] $i+l/z.j 
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0 
u,,=” > , ui j+J‘f = uij. 

At the central node xoj = xrn we have a nonlocal boundary condition 

uoj = u mY foj=fmY 

M 

c ([c 4, Jh2) 
j=l 

*/2.j-l/2 + ChllJh2)1/2,j+l/2] p 
a l/2. j 

which approxmates the regularity condition (3.5). 

4.2. Variable inversion in a grid problem 

We use the approximation (3.8)-(3.10) or (5.1). The operator L, is obtained from (6.7) by 
assuming 

at.4 ggq=o, -~=w/,=(I/J)~. 

For the regularizator D in (5.1) we use the natural approximation 

Dhwh= ( $$)ij([(aJ%)i+l/2,j+l/2~(aJ%)i+l/2,j-l/J 

6W 
- 

[( ) aJgO i-1/2,j+1/2 -( aJ%)i-l/2,j-l/llj* 

As a result we obtain the difference analog (5.1) 

L,w,,--D,w,,=f,,, W4,, 

with the conditions 

W l/2, j E wl/2 7 wi+l/2,j+M = wi+l/2,jv 

’ w*/2 f (hl*Jh2)l/2,j-l/2~if",~l ( F)l,2 j_1,2. 

j=l 

(6.8) 

(6.9) 

The last equality in (6.9) corresponds to the averaged one-dimensional eq. (5.6). The problem 
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(6.8), (6.9) is two-point in i and three-point in j. Its solution may be found with the aid of cyclic 
computational sweep. 

We apply the iterational technique from section 5. By knowing the approximation of grid o: 
we solve (6.8), (6.9) and obtain @+l. Then we determine the solution of the problem correspond- 
ing to (5.5): 

[ 

N 

p;,;*=o, p;+l= c yi-1/2 
n+* 

i=l wi-1/2,j 
(PYj - PL.J -‘. 1 

By taking into account (5.7) we obtain the new appro~mation of coordinates of the extremum 
point 

(p y +1= 

(A”h’)j (P:j”)‘-(P~~1)2 
2 G/2 ’ 

so that the nodes tiz+l are obtained from (3.13). Finally, according to (5.8) 

k *+‘=2& c 
[ 1 M tAnh2)j -‘, s,_; $ (A”h2) n+l J.9 j=l Pj, j=l 

where S, is an area of the polygon Sz, with apexes xj. 
Like in the differential case the convergence of iterations signifies the solution of the difference 

problem (6.1), (6.2). 
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6.4. Equilibrium equation approximation 

Now we shall discuss in detail the approximation of the problem (4.1)-(4.6) corresponding to 
the axisymmetric equilibrium. In the case of the given distributions p( 4) and q( #) the nonlinear 
integro-differential operator, featured in (4.4), 

Fw=$-Rq( $)-Q, * 
max 

is approximated by 

(&zwh)ij= (J) ,(h+1/2-A-1/2)9 
‘J 

i-l/2, l<i<N 
P 

N,<i<N, 

( j&)iifxqi*V2( $)Gk’v2( ~~)iil,2,jti,2. 

Here NP is the number of the isoline describing the plasma boundary aP = a,,,P and 

R 

i ) rJ i-l/2 
=L ’ (f ?)i-1/2,j-l/2’ @IllaX j=l 

R H rJw gl ($T)i-l/2,j-l/2( Wi-t/2,j + W,-l:2,j-l)’ 
J 

The approximation of the right hand side is chosen in the form 

((Ph)ij= i*1/2,j*1/2’ 
l<i<N, 

N,<i<N. 

As a result we have the scheme 

L,Wh + (1 - +$w, - D,,wh = (P,,, <Em;, 

Wi+1/2,j+M= wi+l/2,jv w1/2,jE wl/27 

(6.10) 

(6.11) 

(6.12) 



L.M. Degtyarev, V. K Drozdov / Inverse variable technique 361 

f 
2a R -1 

l/2 @ = -----~~1,2~~,2 r~ 
( ) 

1/27 Y/Z = kv,/, . 
ItlZX 

(6.13) 

In the condition (6.13) the quantity k (and, hence, M+,~) is known for K = 0 and, according to 
(2.5), (2.7), (3.6), determined by the equality 

k =;L_ ?z vi-1,&-l/2. (6.14) 
i=l 

Therefore, the relation (6.13) may be used for obtaining f. which, due to (2.7’) and (2.Q is equal 
to 

f0 = 4&&J P)% (6.14’) 

On the contrary, if in the equilibrium problem the condition (2.7’) is given, eqs. (6.13) and (6.14’) 
allow one to find y/z and, thus, the quantity k. 
Thus, the scheme (6.10)-(6.14) is a difference analog of (4.1)-(4.6). Now we show a way of 

finding the solution to (6.12) on the nth iteration step, i.e. for the fixed coefficients and right 
hand side. As it has already been noted for (6.8), (6.9), for each 1 G i < N - 1 the scheme reduces 
to the j-(three-point) problem with a nonlinear integral term when K = 0: 

x= f cYj(Y)l$, 
j=l 

Z;.+M= q, j= -l,O. (6.15) 

Here 

7. = wi+l,2,j + ly, 

M 

x= fj+l,2 + p+* = c cyj( yK)y;iC+l = - 
j=l 

iv 
max 

Q( -$) -2( f+ yK+li( yK)Z) 
and K is the number of “internal” iterations necessary if K = 0. By using the above linearization 
we eliminate X from (6.15) by the equality 
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where the multipliers Aj = X:., as one may easily check, satisfy the system 

Bj+lxj+l -CfXj+Aj_lXj_l= -~j, O<j<M-1, 

Xj+M 
=xj, Aj+M=Aj, Bj+M=Bj, j= -l,O. (6.17) 

In total, searching for the solution of (6.15) works out into an iterational chain of two cyclic 
computational sweeps for (6.17) + (6.16) + (6.15). The iterations are terminated when one 
reaches the accuracy 

The initial approximation is chosen as qc’ = Wi”,i/,,j or q! = Wr-:>z,j. 

6.5. Iteration convergence check 

At the present time there is no proof that the iterational process in section 5 converges. 
However, the numerical experiment shows that it does. We make some remarks on this matter. 

An important role in the method proposed is played by the artificial viscosity - the 
regularizator D. Having D, in the scheme (6.8), (6.9) provides not only its computational stability 
but the iterational convergence on the whole as well. Practical computations show that while 
choosing the constant a0 in (5.3) it is sufficient for one to restrict oneself by the level 

a0 - (0.1-1.0) A, 

where A is a characteristic scale of coefficients ak,(x, u) in the initial equation. 
After the iteration with number n the discussed algorithm defines the grid G$, the functions 

wt, pi and the quantity k”. Along with w$ we introduce the j-independent function 

W --n=knvh. 

Then on the grid 0;: it is natural to consider the function 

N 

u; = u; = u” + c i$!_,,,h:_,,, 
l=i+l 

to be the solution to the problem (6.1), (6.2). Therefore, as the condition for convergence of the 
iteration we require the satisfaction of inequalities 

(6.18) 

Here II Y, II = II x, II E = m=%~~ I .h I- 
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Together with (6.18) it is interesting to check the accuracies 

Analyzing the results of computations with cp = 10m6 yields 

cw - zw - Ep, c’k - (10-*-10-4)~p, 

the largest residual 

CU-fD - (lo-lo+, 

proves to be in (6.1). 
The number of iterations needed for achieving the accuracy cU - (NM)-i is nearly in 

proportion to the grid dimension in one direction, and the total number of arithmetic operations 
Q - ( NM)3’2. 

Lastly, the internal iterations (6.15)-(6.17) corresponding to the case of given distributions 
p( #), 4( $J) converge very rapidly. In particular, on the grid N = M = 60 only 2-3 iterations are 
required for finding the solution with the accuracy cy = 10V6. 

7. Algorithm for the external confinement field computation 

7. I. Iterational procedure 

We shall give a computational algorithm for solving the problem (2.18) on the determination 
of the external confinement field that generates an equilibrium configuration with given geometry 
and physical parameters. By assuming in (2.18) a, = 6, = 1 and representing the flux function 
J/(r, z; J) in the form of (2.11) we come to the problem of minimizing the functional 

$i(C, z,; J) + 5 J,G(r,, zs; 49 4) - +, 
I=1 

W(J,)=minW(J). 

We recall that the points (r,, zs) belong to the given control contour r. 
Due to the fact that the inherent plasma field #i(r, z; J) implicity depends on the current J 

the problem (7.1) is nonlinear. We shall apply successive approximations for its solution. 
Let the region 0: occupied by plasma be known on the n th step of iterations. Then within ai 

one may solve the boundary value problem of equilibrium, posed in section 2, and hence, find the 
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function p( r, z) = #“( Y, z) - $“,_ By turning further to formulae (2.16), (2.17) we have 

The new approximation J”+ ’ for the current values we obtain by minimizing the functional 

w(J’+l) = f #+,, Z,; J”) + f J;+‘G(r,, Zs; R,, Z&G; ‘+a f (J;+')2+(G;)2 , 
s=l I=1 1 [ I=1 1 

(7.3) 

The minimum condition iTlW/i3J;” = 0 results in the linear system of equations 

f J;+l 2 Gk, z,; R,, Z,)G(r,, z,; R,, 2,) +aJk"+' 
I-1 s=l 

= - 2 (#;(I,, zs; J”)-#;)G(r,, zs; R,, Z,), k=l,2 ,..., K. (7 -4) 
s=l 

The quantity JI”, in (7.3), (7.4) is determined from the conditions (2.9, (2.5’) or from the 
minimum condition (7.3). Note that when performing the computations one should choose the 
regularization parameter (Y that provides the correctness of system (7.4) mainly from the physical 
considerations. Large currents are unfavourable from the energy point of view, therefore to 
reduce them one should increase a, which results in removing the plasma boundary rP from the 
control contour r. 

After having derived (7.4) we find the next approximation for the region ai+’ from the 
condition 

\cI n+1/2(r, z; Jn+‘)=+;(r, z; Jn)+#;+‘(r, z; Jn+l)=+;:, (r, z)EI’;+‘, V-5) 

that determines the boundary l-;+r. 
At the convergence of the above iterational process, formulae (2.11), (2.17) enable us to find 

the flux function 4 (r, z; J) in the whole unlimited region by solving the internal boundary value 
problem of equilibrium. 
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Note that in the direct case the iterational procedure (7.2), (7.5) with J” = J coincides with the 
successive approximation technique usually used for calculation of the axisymmetric equilibrium 
in external fields with a limiter [5]. 

7.2. Numerical technique 

The main purpose of the iteration process under discussion is the solution of the internal 
equilibrium problem and the computation of the contour integral (7.2) at some points, which is 
necessary for obtaining new approximations of currents and plasma boundary from (7.3)-(7.5). 

The first purpose may be achieved by using the algorithm given in section 6. The approxima- 
tion of the contour integral (7.2) will be discussed later one. As for the numerical implementation 
of (7.5) we shall act in the following way. At a small distance from the boundary I’; (by 
stretching the rays O( r, z) = const) we choose two contours y; and y; respectively, inside and 
outside 0.;. At the points obtained we determine the function +‘+l12(r, z; JR+‘) by linear 
interpolatron (or by extrapolation with restriction) and obtain the contour rl+’ where the 
condition (7.5) is approximately satisfied. 

The computation results have shown that the iterational process described converges rather 
rapidly. On the grid N = 20, M = 60 inside the plasma &?i and m = 20 from 10 to 20 iterations 
are required to determine the currents and the boundary I’; with a relative accuracy 10-5-10-6. 

The Green’s function (2.12) has a logarithmic singularity for 

P = (r, z) + (r’, z’) = P’, 

G(P, P’)=g[c(P, P’)-ln p(P, P’)], (7.6) 

p(P, P’)=/(r-r’)2+(z-z’)2. 

Let the boundary I’r is approximated by a broken line rp,h with apexes Pj = ( rj, zj), j = 
1,2,..., M. Then the contour integral in (2.17) is calculated with exact allowance for the 
singularity (7.6) for each segment rj_r/2 of the broken line IYp,h, namely: 

J ’ ‘GG(r, z; r’, z’)dT’= f o(P, P,_,,~)[~(PY P,-I/z)-~(~~ ?i-1/2)1* 
rpr’ an 

j=l 
P-7) 

Here 

u(P, P’)=g+g(r’, ~‘)87j_~,~ 

5-l/2 
i 

rj + rj-1 Zj + Zj-1 
=ppj, p,-I)9 q-1,2 = 2 9 2 

1 
9 (7.8) 

F(P, p,_,,,)87j_1,2 = r_ ln P(PP P’W 
J 

, l/2 
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Note that if the point P lies within a ~-vicinity of the point Pj-l/z the 
calculated by formula (7.6). In this case 

P(C p,-I,*) G +-i/2 

Let 

G( P, P& = 0.q q P, PJ + G( P, PjJ). 

The integral (7.8) is evaluated in terms of the elementary functions 

F( P, p,-1,*)87i-l/2 = [dj-l/2 =%( ‘,Tz) +(7-~-1/2) 

x i In dT_,,, [ ( 
+(T - Tj_1,2)2) - 1]]T=67-“2, 

7=0 

dj-l/2 = l(~-~j-~)(zj-zj-~)-(z-zj-~)(‘j-‘j-~)1/~7j-~/2, 

3-l/2 =((~-~j-~)(~j-~j_l)+(z-zj_~)(zj-zj-l))/6~-l/2~ 

For calculations with the aid of (7.7)-(7.9) the normal derivative a$/an 

function G cannot be 

(7.9) 

in the solution of the 
elliptic problem must be approximated for I-r. The approximation is obtained by assuming 
$( r, z) to be a piecewise bilinear function at the quadrange QN_,,2,J_,,2 adjacent to the 
boundary IYr,h and having the apexes where it takes the values qh determmed by the solution of 
difference problem (6.1), (6.2). More exact approximations of a$/& may be constructed by the 
method proposed in ref. [33]. 

Formula (7.7), which provides higher accuracy, is used also for determining $J( r, z) in a 
calculated rectangle that contains the plasma (in order to complete construction of magnetic 
surfaces); outside the rectangle it is more natural to apply a usual quadric formula. 

8. On tests in MHD equilibrium problems 

We shall give some solutions to the equilibrium eq. (2.2), which are convenient for using as 
tests to check the accuracy of computational algorithms. 

The function 

$(r, z) = co[(A2 - r2)(r2 - S2) -4a2(r2 - o’)z’] 

satisfies [34] the equilibrium equation for 

(8.1) 

dp 
-= 8(1+ a2)co, 
dJ, 

df2 -= 
dlCl 

- 16a2a2c 0, co = 4+_/( A2 - 8’)‘. 
(84 
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solution corresponds to the safety factor 

&) = 4,&-t W - h%n,)]1’2Q($4 an = &km& 

A= 0.5q,2a2(A2-62)2(A2+SZ)-2(A2+S2- 202)-‘, 

Q(4) = ;%(1 + w(j/) cos @)-l(l + wow(+b) cos @)-“‘d8, 

(8.4) 

The functions p( $), f( $) are given by 

N) =fk$ + W - Wk.X)11’2~ 

f, =f(&,,) = 2~c,aq,(A2 + S2)(A2 + S2 - 20~)~‘~. 

The plasma boundary FP coincides with the casing r. and is obtained from the condition 
J/( r, z) = 0. The parameters CY > 0, 0 < (I q 8 < A define a geometry of the plasma cross-section 
so that 

A=r,,= max r, S=rmin= min Y. 
tr., Z)ErO fr. Z)ETg 

The main geometric characteristics of the plasma are: the major torus radius R = 0.5(A + S), the 
aspect ratio 

A”, 
2R A+S 

max 
_r =- 
ti A-S' 

the plasma elongation 

- 2((A2 - u2)(a2 - “2))*‘2]1/2(A _ a)-‘, 

the t~~gul~ty of the plasma boundary (r* = rf zmax)) 63.5) 

G_ R-r* 
-R-r,,= [A+S-2[02+((A2-d)(62-a2))1’2]1’2](A-(j)-1, 

the magnetic axis coordinates 

(rm, zm) = ( [0.5(A2 f S2)j1’2, 0), 
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the relative axis shift 
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the stretching of magnetic surfaces near the axis 

Lines of the level $( Y, z) = const from (8.1) may be presented in the parametric form 

r(a, 0) = r”[l + w(u) cos o]1’2, 

z(a, @)=OSa-‘[r2(a, O)-c~~]-i’~(r~)~6)(a) sin@, 

~(a) = (A2 - S2)(A2 + 82)-*a1’2, 

a = 1 -J//q,, E [o, 11, 0 E [o, 2n]. 

On the magnetic axis ( ym, z”‘) we have the quantities 

dp Pp =‘dJ, 
ii 

9. Computational examples 

As computation practice shows the algorithm discussed here may efficiently be applied to 
solving a wide range of problems which are dealt with the evolution and stability of equilibrium 
plasma configurations with axial symmetry. In this section capabilities of the technique are 
demonstrated on a series of specific examples. In subsection 9.1 comparisons are given between 
the exact solution (8.1)-(8.7) to the equilibrium equation and the numerical experiment carried 
out in quasipolar flux coordinates. The solution of the evolution problem for an ideally 
conducting plasma under an increasing pressure is considered in section 9.2. This example is 
rather exotic due to the smallness of aspect ratio (A = 1.5) and large values of q (2 < q < 14) but 
it is interesting in that it shows strong deformation of the magnetic surface system. The next two 
subsections are concerned with demonstration of orthogonal inverse variables being applied to 
two evolution problems. The case in 9.3 on the so called plasma “exhaust” arises in connection 
with the basic problem concerning tokamak-reactors - the cleanup of working chambers from 

(8.6) 

(8.7) 
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Table 1 

Case 1 2 3 4 

R 5.2 5.2 5.2 1.95 
A 4 4 4 1.5 
E 1.5 2.0 1.5 1.5 
G 0.3 0.5 0.9 0.5 
exact rm 5.360 5.360 5.360 2.344 
exact lCimax 1.0 1.0 1.0 1.0 
calculated r m 5.360 5.360 5.359 2.343 
calculated I),, 0.9977 0.9977 0.9967 0.9967 

burning products and accessory contaminants. Computations [20] confirm the idea proposed in 
ref. [35] that the exhaust occurs due to the ballooning effect. In 9.4 we determine possible 
equilibrium plasma states in compact tori limited in stability with respect to an interchange mode 
- a most dangerous one in such traps [36]. This problem is a particular case of the adiabatic 
equilibrium problem with n( #) = const, which was studied in detail in ref. 1241. The results of 
computations (in quasipolar coordinates) carried out for the external confining field in INTOR 
configurations and earlier published in ref. [21,27] are given in 9.5. 

9.1. Comparison with tests 

Everywhere below we take the function 

as the basic flux variable, and the constant c0 in (8.2) is assumed to be 

co = 4( A2 - S”) -2, 

which corresponds to I/J,, = 1. The equilibrium problem is solved for given p( J/) and ~(4) by 
using the expressions (8.2) for different values of parameters (8.5) describing the plasma 
geometry (aspect ratio, elongation, triangularity). Table 1 and fig. 2 give the results of compari- 
son between the numerical solution obtained on the grid 

6.$ = (a, = 0, ai = J(i - 0.5)/~N - 0.5) ,1 =g i < N; 

Bj=2Tj/M,0<jdM}, N=19, M=64, 

and the exact solution constructed by parametric formulae (8.6). We give here every second 
magnetic surface beginning from the first one. As is seen from fig. 2 the exact and numerical 
isolines J/( r, z) = const practically coincide, a relative accuracy of their determination being 
about f0-4-10-J. In the case of large triangularity (table 1-3) some difference is attributed 
mainly to a choice of points O(r, z) = const in parametrization (8.6). Fig, 3 shows the compari- 
son results for given functions (8.3), (8.4), p(q) and 4( #), for N = 19, M = 20, and N = 59, 
M = 60, a, = 0, aj = (i - 0.5)/~N-0.5), 1 <i< N. Here #mm= 1, qm=2.0, (2<q(a)s2.9), 
the geometric parameters are listed in table l-l. 
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4 

I-‘ tJ 0 G 0 

Fig. 2. Comparison between exact and numerical solutions at given p ($) and q(#) in quasipolar flux coordinates 

(table 1). 

Fig. 3. Comparison between exact and numerical solutions at given p(G) and q($) on different grids (quasipolar 
coordinates). 
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By analyzing the results we may conclude that the algorithm for quasipolar inverse coordinates 
yields high accuracy in determining the magnetic surfaces and other characteristics of equilibrium 
plasma configurations, namely 4( \cI), f( $), #,, and the magnetic axis shift. The typical time for 
computing the equilibrium on the grid with N = M = 60 is about 3 mm on the BESM-6 computer 
(one iteration in the process of sections 5.6 takes 3 s). 

As for the technique of the orthogonal ( y = 1) flux coordinates, we note that when the surfaces 
IJ.J ( Y, z) = const are elongated E z 1 near the axis, it proves to be inferior to the quasiorthogonal 
coordinate technique. It may be explained by “sticking” of isolines O( r, z) = const near the axis, 
which results in strong irregularity of the Eulerian grid Wh = { rii, zij}. One may eliminate this 
“sticking” and achieve higher accuracy be properly choosing the quasiorthogonal coordinates 
with y-e -I. Nevertheless, the solution of the problem obtained by using the orthogonal 
variables yields rather feasible geometric and physical parameters of the equilibrium plasma. 
Moreover, the technique has a wide range of applications since it does not require the starwise 
condition for magnetic surfaces which is necessary in the case of direct (without a preliminary 
replacement of variables) introduction of quasipolar coordinates. 

9.2. Evolution of an ideally conducting plasma 

This problem (see section 2.3) was solved by the quasipolar coordinate algorithm for the fix 
shaped plasma (table l-4). The flux coordinates and the computational grid were chosen like in 
9.1. The safety factor was given by (8.3) 

4m = 2.0, JIInax = 1, (2.0 < 4 4 14.0) 

and the pressure 

P(#> = 8~00 + ~‘>c& 

The magnetic surfaces obtained by computations for different pressures (parameter p,,) are 
shown in fig. 4. The respective plasma characteristics are listed in table 2 including the values that 
define the tokamak energy performance: 

s 2 prdS 
/ 

P =p*= Op 

J QP 
B,ZdS 

J 
Birds ’ 

% 
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Fig. 4. Equilibrium for flux conserving evolution. Plasma touches the casing (table 2). 

From the computations it is seen that when the pressure increases due to the ballooning effect the 
magnetic surfaces are more elongated, the axis shifts outside, and the plasma diamagnetism (the 
difference f( amax ) -f(O)) grows. High values of p = 20%, &, = 3.5 are reached even for q = 2-14. 

9.3. “Exhaust” problem solution 

Let tht plasma fill the working chamber of an ideally conducting two-chamber casing shown in 
fig. 5. In order to evaluate the possibility of exhaust due to the ballooning effect one should 
determine the parameters for which the plasma ceases being maintained in the working chamber 
and flows through a rather narrow gap into an auxiliary chamber. This problem is solved in the 
evolution model (2.3). In accordance with the conditions (2.4)-(2.7) we give the values’ 

Table 2 

PO 1 2 4 6 

P (W 3.15 6.41 
P* (W) 4.01 8.42 

2 0.81 1.01 1.72 1.33 

20) 12.97 5.530 15.19 5.317 
f(a,,) 5.533 5.587 
rm 2.343 2.491 

13.01 19.64 
17.75 27.50 
2.75 3.52 
1.76 1.98 

18.99 22.25 
4.862 4.377 
5.698 5.815 
2.644 2.722 



4 

s s \ 
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Table 3 

;(x) 0.30 2.0 0.25 3.3 4.1 0.20 0.15 5.1 
PII? 0.34 0.400 0.67 0.90 

and the distributions 

PC4 =Pn$ - e%J~ 

464 = 4m + (!lp - 4mb/~p~ 

&)=1-J//#,,, q,,-,=L q,=1.67. 

The solution of this problem in direct Eulerian coordinates (r, z) meets some difficulties. The 
latter are due to a complex geometry of the region, a free boundary, and a nonlinear integro-dif- 
ferential structure of operator (2.9). Besides, at small pressures the problems admits two 
solutions, i.e. the plasma may occupy either the left or right chamber. The inverse variable 
technique based on introduction of orthogonal coordinates allows one to overcome the above 
difficulties. 

The purpose of computations consisted in finding the critical value pi and the respective value 
PC. When these values are exceeded there is only one solution - the plasma equilibrium in the 
auxiliary chamber. Table 3 and fig. 5 give a number of the system states close to critical ones 
(and with acceptable p) in dependence on the relative width of the gap d. It can be seen that for 
small d an outer contour of the plasma has a typical peak shape directed into the gap between 
the chambers. 

9.4. Adiabatic equilibrium in compact tori 

As discussed above, searching for equilibrium plasma states in compact tori with limited 
stability with respect to the interchange mode is equivalent to the solution of the adiabatic 
evolution problem in 2.4. We give its computations with parameters 

Ellipsoidal configurations are given in fig. 6 for the fixed plasma volume VP = 41r/3 and the 
quantity 

which characterizes the intensity of thermonuclear reactions, c = 8.8 for a sphere. It is shown that 
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Fig. 6. Equilibrian compact tori with limited stability against interchange modes. Plasma occupies ellipsoids with equal 
volume at jy, p2dV = const. 

in such equilibrium configurations stability limited against interchange disturbances pressure 
may be strongly peaked pmJpmin = 100. The magnetic axis, however, is removed from the 
symmetry axis r = 0 so that the plama is practically a torus with large aspect ratio A = 4. 
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9.5. Calculation of external fields in INTOR like configurations 

Consider an example of the algorithm discussed in section 7 in application to computation of 
an external confining field in the INTOR like plasma configuration. The control contour r to 

Fig. 7. Iterations of plasma boundaries in calculations of external field in INTOR like configurations (r is a control 
contour). 
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which the plasma boundary rP must be drawn was chosen in the form 

cosrp-OS(G,+G,+(G,-G,)sincp)sin2q , 1 
z(cp)=Z+(R/A)0.5[E,+E2+(El-E,)sinq] sinq, 

with the typical INTOR parameters R = 5.3, Z = 0.6 M, A = 5.3/1.2, E, = 1.5, E, = 1.7, 
G, = 0.2, G, = 0.4. At cp = &r the contour r has a corner imitating a separatrix, it is controlled 
by the quantities D = 1.3 and y = 0.5. The pressure and safety factor distributions over the 
magnetic surfaces were given as 

P(a)=P,(l-a)2, 4(~)=4m+(qp-4xn)~2~ 

a=1 -(w,hlax-&J-l~ 
qm = 1.0, qp = 2.1, J/,, - #, = 1.0. 

a b 

‘7’ ’ 

Fig. 8. INTOR like plasma configurations; (a) table 4, (b) table 5. 
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The dimension quantities were recalculated from the condition that the longitudinal field 
Bq = 5.5 T at the chamber center (R, Z). 

In computations the value of J/r was obtained by minimizing the functional (7.1), and the 
regularization parameter a = 0.001 was chosen so that the configuration must satisfy certain 
engineering requirements (a proper geometry of the divertor channel, reasonable currents, etc.). 

Fig. 7 illustrates the convergence of iterational process in section 7 (n = 0, 5, 10, 15) m = 20, 
N = 39, M = 40. The equilibrium configuration with 9 confining coils was studied in detail (table 
4). It is obtained by a crude optimization in the number and position of external currents and 
shown in fig. 8a for the maximal j3 = 5.6%. The values p, j3, are obtained by integration over the 
cross section of the region fi2, bounded by the separatrix. The poloidal field and currents for the 
INTOR type arrangement of coils are shown in fig. 8b and table 5. Here the internal separatrix 
branch is declined downward at a larger distance which allows more convenient arrangement of 
divertor plates. 

Analysis of computations shows that the formation of the INTOR like plasma configuration 
requires a small ( = 10) number of confining coils while a total current in coils must be 
CL, 1 Jl ( = 100 MA at the plasma current Jp = 6.4 MA. 

10. Conclusions 

Aside from the above examples the algorithm described has been applied successfully to 
solving the following MHD-equilibrium problems. 

1. Optimization of the helical system parameters on the basis of an exact 2-D equilibrium 
equation [23,26] and a stellarator approximation [22]. 

2. Investigation of the stability against the ideal MHD mode by means of 1-D criteria [25] and 
the solution of a complete spectral problem. 

3. Searching for equilibrium configurations with given q( $) and limiting stability against all 
ideal MHD modes [37]. 

4. Study of transport processes in a 1.5 D-scale model [27]. 
In all the cases the inverse variable algorithms proved to be a convenient and efficient means 

of computations. 
At the present time the quasipolar flux coordinate case is being generalized for the solution of 

3-D (nonsymmetric) MHD equilibrium problem in the exact scalar statement [38,39] similar to 
the Grad-Shafranov equation. 
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