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Abstract. The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron
range of frequencies in arbitrary axisymmetric toroidal geometry. The model used, based on the
finite Larmor radius approximation, describes the compressional and torsional Alfvén waves and
ion Bernstein waves excited by linear mode conversion. Absorption by the ions occurs at the
fundamental and first harmonic of the cyclotron frequency, and by the electrons through Landau
and transit time damping.

The numerical solution is based on the spectral representation of the wave fields in the poloidal
angleϑ , and cubic finite elements in the radial variableψ . The spectral approach in the poloidal
angle allows us to evaluate in a numerically efficient way the integrals over the particle orbits
along magnetic field lines which arise when the high frequency (HF) plasma current is obtained by
solving the linearized Vlasov equation; the leading effects of toroidicity on cyclotron absorption
and spatial dispersion are also taken into account. The code offers a number of options, which
allow us to compare the complete finite Larmor radius model with simpler approximations, such
as the widely used order reduction algorithm, which replaces the excitation of ion Bernstein waves
with an equivalent power sink.

1. Introduction

Considerable effort has been devoted to the numerical modelling of ion cyclotron waves
propagation and absorption in tokamaks. Models in plane-stratified geometry were
implemented first, because they involve only the solution of ordinary differential equations
[1–5]. They give useful information on the distribution of the absorbed power among different
species in the plasma, and on the efficiency of mode conversion to ion Bernstein waves;
moreover, they are particularly appropriate for the evaluation of the antenna load. Only full-
wave solutions of Maxwell–Vlasov equations in toroidal geometry [6–15], on the other hand,
provide reliable power deposition profiles for comparison with the results of heating and
current drive experiments, and allow us to investigate specific effects of toroidicity on wave
absorption and mode conversion. A satisfactory model must describe the compressional and
torsional Alfvén waves (or, depending on the parallel phase velocity, the kinetic counterpart
of the latter), and the lowest order ion Bernstein (IB) waves which can be excited by mode
conversion near first-harmonic cyclotron resonances or ion–ion hybrid resonances. Dissipative
effects must include absorption by the ions at the cyclotron frequency and its first harmonic,
and by the electrons through Landau and transit time damping [16]. Here we describe a
new version of the toroidal full-wave code first presented in [10], which has been completely
rewritten and renamed TORIC.
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The first step in the development of a toroidal full-wave code is to write an adequate
set of wave equations in the ion cyclotron (IC) frequency range in a hot, inhomogeneous
plasma. This is by no means a trivial task, except in the ‘cold-plasma’ limit, in which the
local cold-plasma dielectric tensor is sufficient to describe the plasma response even if the
equilibrium is non-homogeneous in space. The cold-plasma approximation, however, is not
satisfactory, since it misses IC harmonic damping nearω = 2�ci and mode conversion
to IB waves, which are both finite pressure effects. When finite-temperature effects are
important, the high frequency (HF) current in the plasma must be obtained by solving the
linearized Vlasov equation; if the equilibrium is non-uniform, this leads, in principle, to a
constitutive relation in integro-differential form. In other words, the HF current is a non-
local functional of the HF field. In the direction perpendicular to the static magnetic field a
substantial simplification can be obtained by expanding in the Larmor radius of the particles,
assumed to be much smaller than the perpendicular wavelengths involved. TORIC solves the
finite Larmor radius (FLR) wave equations in the approximation derived by Swanson [17]
and by Colestock and Kashuba [18] for the ions, augmented by the appropriate FLR terms
for the electrons [19]. The Swanson, Colestock and Kashuba (SCK) wave equations, strictly
speaking, do not systematically include all second-order terms in the Larmor radius expansion.
We will argue in section 3, however, that the terms omitted are quantitatively relevant only
for parameters such that the FLR expansion is anyhow invalid (in particular near fundamental
ion cyclotron resonances), and that, as a consequence, keeping these terms often leads to non-
physical results. The local dispersion relation corresponding to the SCK approximation, by
contrast, can be shown to be always a good approximation to the full hot-plasma dispersion
relation, even outside the validity range of the FLR expansion, so that problems connected with
the breakdown of the FLR expansion in parts of the integration domain can be more easily
avoided in practice.

Wave equations of the SCK model where originally obtained assuming for simplicity
a plane-stratified geometry with straight static magnetic field. To generalize them to the
tokamak case, we have written the HF plasma current obtained in this way in vector form,
and then transformed it to toroidal coordinates. In this geometry, however, there is a further
complication, due to the fact that the expansion in the Larmor radius puts the constitutive
relation into differential form only in directions perpendicular to the static magnetic field: when
B0·∇B0 6= 0, the relation between HF current and field remains non-local along magnetic field
lines. A correct treatment of the resulting integral operators in the wave equations turns out to
be important to describe the effects of toroidicity on resonant IC absorption. Our approach to
this end will be described in section 5. Writing the HF current in vector form also makes it easy
to evaluate the parallel component of the electric field on the same footing as the perpendicular
components, rather than iteratively as in [10]. This improves the accuracy of the evaluation
of power absorption by the electrons, as required, in particular, for a reliable evaluation of the
efficiency of current drive by HF waves in the IC frequency range [20].

The numerical discretization is based on the representation of the solution as a truncated
Fourier series in the poloidal angleϑ , and uses cubic finite elements [21] in the radial variable
ψ . The latter have excellent convergence properties, due to the fact that both the electric
and magnetic field are continuous at each point of the mesh. Because of the sharp poloidal
variation of the coefficients of the wave equations in the IC frequency range, on the other hand,
coupling between different poloidal Fourier modes is very strong, and can by no means be
regarded as a perturbative effect (in contrast, for example, to the situation in the low-frequency
magnetohydrodynamic (MHD) limit). As a consequence, the number of modes required to
reach convergence can be quite large, particularly in scenarios with weak absorption. The
spectral representation of the wave fields is nevertheless very useful, because it allows a
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quantitatively accurate approximation of the integrals along particle orbits which describe the
effects of toroidicity on parallel dispersion and collisionless IC absorption.

To facilitate comparison of fully toroidal results with simpler models, a number of options
have been added to TORIC. Particularly useful is the implementation of the order reduction
algorithm (ORA) [22], which replaces the excitation of ion Bernstein waves by an equivalent
power sink. Although based on an euristic approach, the power deposition profiles obtained
in this way are quite accurate; the suppression of short wavelength features in the solution, on
the other hand, allows relatively coarse meshes to be used both in the poloidal and the radial
directions. The resulting reduction in execution time and memory requirements make the ORA
option of TORIC a useful tool for routine analysis of IC heating, possibly in conjunction with
other codes, such as those describing radial transport in tokamaks.

The paper is organized as follows. In section 2 we describe the plasma configuration, and
in section 3 we present the wave equations of the SCK model. In section 4 these equations are
put into the Galerkin variational form, which is the basis of the finite elements discretization.
In section 5 we introduce the spectral representation of the solution, and discuss our treatment
of the integral operators which arise from the integration of the linearized Vlasov equation in
toroidal geometry. The regularity conditions at the magnetic axis, and the boundary conditions
at the plasma edge, at the antenna and at the Faraday shield, are discussed in section 6. Section 7
is devoted to the power balance. Damping of ion Bernstein waves and collisional broadening
of Alfv én resonances are also discussed in this section. The order reduction algorithm is
presented in section 8. Section 9 summarizes the numerical implementation. Finally, a few
examples are presented in section 10. They include some detailed comparison of the TORIC
results with those of the ORA approximation, and those of the code FELICE, which solves the
same equations in plane-stratified geometry.

2. Equilibrium model.

2.1. The MHD configuration

The code uses toroidal coordinatesψ ,ϑ ,ϕ, where the dimensionless variableψ labels magnetic
surfaces, whileϑ andϕ are the poloidal and toroidal angles, respectively. The axisymmetric
MHD equilibrium is assumed to have a representation of the form

X = X(ψ, ϑ) Z = Z(ψ, ϑ) (1)

whereX, Z are horizontal and vertical Cartesian coordinates in the poloidal cross section,
with origin at a distanceR0 from the vertical axis (the centre of the vacuum vessel). Thus
R = R0 +X, φ = −ϕ, Z constitute a cylindrical coordinate system. The covariant metric of
the magnetic coordinates can be written

gij =
N2

ψ G 0
G N2

τ 0
0 0 R2

 (2)

with elements

N2
τ =

(
∂X

∂ϑ

)2

+

(
∂Z

∂ϑ

)2

G =
(
∂X

∂ψ

)(
∂X

∂ϑ

)
+

(
∂Z

∂ψ

)(
∂Z

∂ϑ

)
(3)

N2
ψ =

(
∂X

∂ψ

)2

+

(
∂Z

∂ψ

)2
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satisfying the identityN2
ψN

2
τ = J 2

p +G2, whereJp is the Jacobian of equations (1)

Jp =
(
∂X

∂ψ

)(
∂Z

∂ϑ

)
−
(
∂Z

∂ψ

)(
∂X

∂ϑ

)
. (4)

In general,ψ andϑ are not orthogonal, i.e.G 6= 0. Orthogonal unit vectorsuψ , uτ , uϕ can
nevertheless be defined at each point through

uψ = 1

Nτ

(
∂Z

∂ϑ
uX − ∂X

∂ϑ
uZ

)
= Jp

Nτ
∇ψ

uτ = 1

Nτ

(
∂X

∂ϑ
uX +

∂Z

∂ϑ
uZ

)
= Nτ

(
∇ϑ +

G

N2
τ

∇ψ
)

(5)

uϕ = R∇ϕ
whereuX anduZ are unit vectors of the Cartesian coordinates in the poloidal cross section.
The static magnetic field has contravariant and physical representations

B = B0R0{a f (ψ)∇ϕ ×∇ψ + g(ψ)∇ϕ}
= R0

R
B0(sin2uτ + cos2uϕ) (6)

respectively, with

tan2(ψ, ϑ) = Bτ

Bϕ
= aNτ

Jp

f (ψ)

g(ψ)
. (7)

In principle, the code can easily be interfaced with any tokamak equilibrium solver giving
the functions (1) (or the inverse functionsψ(X,Z), ϑ(X,Z)) and tan2 in twice continuous
differentiable form. As a default, however, anapproximateequilibrium is provided, assuming

X(ψ, ϑ) = 1(ψ) + aψ cos(ϑ − δ(ψ) sinϑ)

Z(ψ, ϑ) = aη(ψ) sinϑ
(8)

where the functions1(ψ) (Shafranov shift),η(ψ) (ellipticity) and δ(ψ) (triangularity) are
low-order polynomials inside the separatrix, and are continuously extrapolated to their value
at the wall outside it. The dependence ofRBϕ onψ , which is a finite-β effect, is neglected,
i.e.g(ψ) ≡ 1, whilef (ψ) is determined from Faraday law

f (ψ) = 4π

c

I (ψ)

R0a B0
∫ 2π

0 (N2
τ /RJp) dϑ

(9)

whereI (ψ) is the total toroidal current inside the magnetic surfaceψ .

2.2. Differential operators

The numerical approach based on the Galerkin weak-variational formulation requires only
first-order differential operators. In terms of the physical componentsEψ ,Eτ ,Eϕ with respect
to the local basis (5) the divergence and curl operator are

∇ ·E = 1

RJp

{
∂

∂ψ
(RNτEψ) +

∂

∂ϑ

(
R

Nτ
(JpEτ −GEψ)

)}
+

1

R

∂Eϕ

∂ϕ
(10)

and

∇×E = 1

R

{
1

Nτ

∂(REϕ)

ϑ
− ∂Eτ
∂ϕ

}
uψ

+
1

R

{
∂Eψ

∂ϕ
− Nτ
Jp

(
∂(REϕ)

∂ψ
− G

N2
τ

∂(REϕ)

∂ϑ

)}
uτ (11)

+
1

Jp

{
∂(NτEτ )

∂ψ
− ∂

∂ϑ

(
1

Nτ
(JpEψ +GEτ

)}
uϕ
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respectively. The HF current in the plasma, on the other hand, is naturally written in the local
‘Stix’ frame, whose basis unit vectors are related to those of the flux coordinates by

uξ = uψ
uη = cos2uτ − sin2uϕ (12)

uζ = sin2uτ + cos2uϕ.

Hereuζ = B/B is the unit vector tangential to the magnetic field line, whileuη is orthogonal
to it and lies in the magnetic surface. The code works with physical components in this frame,
namely

Eξ = Eψ
Eη = cos2Eτ − sin2Eϕ (13)

Eζ = sin2Eτ + cos2Eϕ.

Although using contravariant components in the globalψ , ϑ , ϕ coordinates would spare some
overhead in the discretization of the system, choice (13) has the advantage of keeping well
separated the parallel and perpendicular plasma response, which are different by orders of
magnitude,|Eζ | � |E⊥|.

To represent the HF currents in the plasma we will also need a basis for circularly polarized
components perpendicular toB. The appropriate definitions in toroidal geometry are

u± = 1√
2
{e∓iτ (uψ ∓ iuη)} E± = 1√

2
{e±iτ (Eψ ± iEη)} (14)

where

e±iτ = 1

κNτ

(
∂Z

∂ϑ
∓ i cos2

∂X

∂ϑ

)
κ2 = 1− sin22

N2
τ

(
∂X

∂ϑ

)2

. (15)

The coefficients e±iτ ensure thatE± are uniquely defined also on the magnetic axis.

3. The wave equations in the plasma

3.1. The Swanson–Colestock–Kashuba approximation

Maxwell equations in the plasma can be written

∇×∇×E = ω2

c2

(
E +

4π i

ω
JP

)
(16)

whereJP is the HF plasma current, which is evaluated by solving the linearized Vlasov
equation, and is, in principle, an integral functional of the wave electric fieldE. In the ion
cyclotron range of frequencies it is justified to use the small Larmor radius approximation for
JP

JP = J (0) + J (2) (17)

where suffixes denote the order in the finite Larmor radius (FLR) expansion. To this orderJP

has recently been derived [23] directly in axisymmetric toroidal geometry. Here we have
followed a somewhat different procedure, starting from the results of [19], in which the
Vlasov equation is solved in plane-stratified geometry, and assuming that the vector form
of JP obtained in this limit holds also in toroidal geometry. In the small Larmor radius
approximation the role of toroidicity inJP is critical (i.e. it does not reduce to a simple change
of coordinates) only in the integrals over the particle motion along magnetic field lines. In
[19] these integrals, which describe parallel dispersion and collisionless absorption, have been
treated in a formal way which can be easily extended to the toroidal situation, while they have
been completely ignored in [23]. We will discuss their evaluation in section 5.2.
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3.1.1. The zero Larmor radius plasma current.The zero Larmor radius plasma currentJ (0),
combined for convenience with the vacuum displacement current, can be written

E +
4π i

ω
J (0) = L̂E+u+ + R̂E−u− + P̂Eζuζ

= (ŜEψ − iD̂Eη)uψ + (iD̂Eψ + ŜEη)uη + P̂Eζuζ (18)

where we have introduced the integral operators

L̂E+ = E+(r)−
∑
α

ω2
pα

ω2

∫ +∞

−∞
du

e−u
2

√
π

(
− iω

∫ t

−∞
dt ′ ei

∫ t
t ′ (ω−�′g) dτE′+

)
R̂E− = E−(r)−

∑
α

ω2
pα

ω2

∫ +∞

−∞
du

e−u
2

√
π

(
− iω

∫ t

−∞
dt ′ ei

∫ t
t ′ (ω−�′g) dτE′−

)
(19)

P̂Ez = Ez(r)−
∑
α

ω2
pα

ω2

∫ +∞

−∞
du

e−u
2

√
π
(2u2)

(
− iω

∫ t

−∞
dt ′ eiω(t−t ′)E′z

)
and

Ŝ = 1
2(R̂ + L̂) D̂ = 1

2(R̂ − L̂). (20)

Thet ′-integrations are along magnetic field lines, with, for each species

E′ = E
(
r −

∫ t

t ′
(v‖uζ ) dτ

)
(21)

andu = v‖/vth, wherevth =
√

2T/m is the thermal speed.

3.1.2. The ion FLR current. In the Swansion–Colestock–Kashuba (SCK) approximation
[17, 18] only the terms resonant atω = 2�ci are retained in the FLR ion current. They can be
written in vector form as [19]

4π i

ω
J (2) = c2

ω2
R · {∇⊥(σ (2)∇⊥ · (R ·E⊥)− iδ(2)∇⊥ · (uζ × R ·E⊥))

−(uζ ×∇⊥)(σ (2)∇⊥ · (uζ × R ·E⊥) + iδ(2)∇⊥ · (R ·E⊥))} (22)

where

σ̂ (2) = ρ̂(2) + λ̂(2)

2
δ̂(2) = ρ̂(2) − λ̂(2)

2
(23)

with

λ̂(2)E+ = 1

2

∑
i

ω2
pi

�2
ci

v2
thi

c2

∫ +∞

−∞
du

e−u
2

√
π

(
− iω

∫ t

−∞
dt ′ ei

∫ t
t ′ (ω−2�′g) dτE′+

)

ρ̂(2)E− = 1

2

∑
i

ω2
pi

�2
ci

v2
thi

c2

ω

ω + 2�ci
E−. (24)

The matrixR = R−1 is the reflection matrix with respect to the plane containingB0: with
ug = ∇⊥B0/|∇⊥B0| it can be written

R ·E⊥ = E⊥ − 2ug × (E⊥ × ug). (25)

Neglecting terms of order2(∂2/∂ψ) and2(∂2/∂ϑ), one finds

(R ·E⊥)ψ = C2Eψ + S2Eη

(R ·E⊥)η = S2Eψ − C2Eη (26)
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where

C2 = b2
ψ − b2

η S2 = −2bψbη (27)

with

bψ = 1

κNτ

∂Z

∂ϑ
bη = cos2

κNτ

∂X

∂ϑ
(28)

κ being defined in equation (14). It is not difficult to check that

R ·E ∓ iuζ × (R ·E) = 2E±u±. (29)

Note thatJ (2) is not rotationally invariant (the direction∇B0 being singled out), but satisfies
Onsager relations, which are necessary for energy conservation in the absence of dissipative
effects (i.e. when Im{λ(2)} = 0).

3.1.3. The electron FLR current.The SCK model must be completed by taking into account
the FLR electron current, which consists of two terms

4π i

ω
J (2)e =

4π i

ω
(J

(2)
MP + J (2)MX ) (30)

respectively, associated with magnetic pumping (MP) and mixing MP with electron Landau
damping (ELD)

4π i

ω
J
(2)
MP = −2

c2

ω2
∇⊥ × (λ̂(o)(∇⊥ ×E⊥))

4π i

ω
J
(2)
MX = i

c2

ω2
{∇⊥ × (ξ (o)(uζ · ∇) Eζuζ ) + uζ (uζ · ∇)(ξ (o)(uζ · ∇⊥E⊥))} (31)

with

λ̂(o)E = 1

2

ω2
pe

�2
ce

v2
the

c2

∫ +∞

−∞
du

e−u
2

√
π

(
− iω

∫ t

−∞
dt ′ eiω(t−t ′)E′

)
ξ̂ (o) Ej = 1

2

ω2
pe

ω�ce

v2
the

c2

∫ +∞

−∞
du

e−u
2

√
π

(
ω2 ∂

∂ω

∫ t

−∞
dt ′ eiω(t−t ′)E′j

)
. (32)

In addition, the electrons contribute the small quantities

λ̂2
eE+ = 1

2

ω2
pe

�2
ce

ω

ω + 2�ce
E+ ρ̂2

eE− =
1

2

ω2
pe

�2
ce

v2
the

c2

ω

ω − 2�ce
E− (33)

to λ̂2, ρ̂2, respectively.
We note that in this approximation we have neglected all the ‘diamagnetic’ contributions

to the HF plasma currentJP (i.e. the terms proportional to gradients of the equilibrium density
and temperature, which arise because the distribution functions on the right-hand side of the
linearized Vlasov equation depend on the position of the guiding centre rather than of the
particles). Omitting these terms eliminates the drift branch of the dispersion relation, but has
a negligible influence on waves in the IC frequency range. Less obvious is the omission of the
FLR ion terms resonant at the fundamental cyclotron frequency. These terms are always small
corrections to the zero-Larmor radius current, which is also resonant atω = �ci, in contrast
to the FLR terms which have been kept, which are resonant near the first harmonic whereJ (0)

remains finite. The superiority of the SCK model over the complete FLR model, however, is
best proved by analysis of the local dispersion relation. According to both the exact hot plasma
dispersion relation and to the SCK model, the perpendicular wavevector of the ion Bernstein
wave diverges asω → �ci from above; below�ci the IB branch is evanescent. By contrast,
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the FLR dispersion relation including also the FLR corrections resonant at the fundamental
predicts that this wave remains propagative below the ion cyclotron frequency and throughout
the MHD frequency domainω � �ci, although with a wavelength shorter than the ion Larmor
radius. Nearω = �ci, moreover, the power absorption predicted by the complete FLR model
is not positive-definite [24], in contrast with a general result [25] according to which in a
Maxwellian plasmaPabs is always positive provided that terms explicitly proportional to the
gradients of the equilibrium quantities are neglected. In the SCK model the power absorbed
by the ions is always positive, as it should be.

4. Weak-variational formulation

4.1. The variational integral in the plasma

The wave equation is put into Galerkin’s weak-variational form by multiplying equation (16)
scalarly with an arbitrary vector functionF belonging to a suitable test function space (defined
so thatF satisfies the same boundary conditions asE), and integrating over the whole plasma
volume ∫

dV F ∗ ·
{
− c2

ω2
∇×∇×E +E +

4π i

ω
(JP + JA)

}
= 0. (34)

The second-order operators are then eliminated by partial integration, and the resulting equation
is written

Qcurl +Qpl +Qant + Scurl + Spl = 0 (35)

whereQ, S denote volume and surface integrals, respectively. The latter extend over the
plasma surface and any other discontinuity surface. For simplicity, the displacement current is
collected with the zero Larmor radius plasma current, as it is done when defining the dielectric
tensor of the uniform plasma. Moreover,Qpl andSpl will be further split into zero- and
second-order terms in the Larmor radius expansion

Qpl = Q(0)pl +
∑
α

Q(2,α)pl Spl = S(0)pl +
∑
α

S(2,α)pl (36)

where the sum is over particle species. We now list all the terms in equation (35) in turn for
the region inside the plasma.

4.1.1. The curl contribution. The identity

F ∗ · (∇× (∇×E)) = (∇× F ∗) · (∇×E)−∇ · (F ∗ × (∇×E)) (37)

gives

Qcurl = − c
2

ω2

∫ ∫
P l

RJp{(∇× F ∗) · (∇×E)} dψ dϑ (38)

and

Scurl = c2

ω2

∫
Spl

RNτ {uψ · (F ∗ × (∇×E))} dϑ (39)

respectively.
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4.1.2. The zero Larmor radius plasma current.The contribution from the zero Larmor radius
plasma current, including the vacuum displacement current, is

Q
(0)
pl =

∫ ∫
RJp{F ∗+ L̂E+ + F ∗−R̂E− + F ∗ζ P̂Eζ } dψ dϑ

=
∫ ∫

RJp{F ∗ψ(ŜEψ − iD̂Eη) + F ∗η (iD̂Eψ + ŜEη) + F ∗ζ P̂Eζ } dψ dϑ. (40)

4.1.3. The ion FLR current. After integration by parts, the contribution of the FLR part of
the ion current to the variational integral becomes

Q(2,i)pl = −
c2

ω2

∫ ∫
P l

RJp{∇⊥ · (R · F ∗⊥)(σ̂ (2)∇⊥ · (R ·E′⊥)− iδ(2)∇⊥ · (uζ × R ·E′⊥))

−∇⊥ · (uζ × R · F ∗⊥)(σ̂ (2)∇⊥ · (uζ × R ·E′⊥)
+iδ̂(2)∇⊥ · (R ·E′⊥))} dψ dϑ (41)

and

S(2,i)pl =
c2

ω2

∫
Spl

RNτuψ · {R · F ∗⊥(σ̂2∇⊥ · (R ·E′⊥)− iδ2∇⊥ · (uζ × R ·E′⊥))

+uζ × R · F ∗⊥(σ̂2∇⊥ · (uζ × R ·E′⊥) + iδ̂2∇⊥ · (R ·E′⊥))} dϑ. (42)

4.1.4. The electron FLR current.After integration by parts, the volume contributions of the
FLR part of the electron current to the variational integral become

Q(2,e)MP = −2
c2

ω2

∫ ∫
P l

RJp{(∇⊥ × F⊥)∗λ̂(o)(∇⊥ ×E⊥)} dψ dϑ

Q(2,e)MX = i
c2

ω2

∫ ∫
P l

RJp{(uζ · (∇⊥ × F⊥))∗ξ̂ (o)(∂ζEζ )− (∂ζFζ )∗ξ̂ (o)(uζ · (∇⊥ ×E⊥))}
(43)

while the corresponding surface contributions are

S(2,e)MP = 2
c2

ω2

∫
Spl

RNτuψ · {F ∗⊥ × (λ̂(o)(∇⊥ ×E⊥)} dϑ

S(2,e)MX = i
c2

ω2

∫
Spl

RNτ {F ∗⊥ × (ξ̂ (o)(∂ζEζ )uζ ) · uψ }. (44)

4.2. The variational integral in vacuum

In the vacuum region between the plasma surface and the wall a somewhat different formulation
is required in order to avoid numerical pollution, i.e. numerically generated oscillations on the
scale of the radial mesh step. The origin of this problem is well known. The dispersion
relation of plane waves satisfying the discretized equations (in the sense of a local, or WKB,
approximation) is slightly different from the dispersion relation of the continuous equations,
the error in the wavelength of characteristic modes being of the order of the mesh step1r. The
discretized solution, therefore, is reliable only for waves with wavelengths sufficiently larger
than1r. Pollution occurs when an evanescent wave with evanescence length of the order1r

is transformed by the discretization into a propagative wave with a wavelength of the same
order.
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In vacuum Maxwell’s equations admit only two independent solution. In this case, a
third-order FEM discretizationalwaysintroduces a third independent wave (if this were not
so, the stiffness matrix would be singular). The spurious wave becomes the dominant feature if
it happens to be propagative; even if evanescent, and thus not obviously ‘visible’ in the results,
its presence can cause substantial errors when imposing the boundary conditions at the antenna
and the plasma surface. Jiang, Wu and Povinelli [26] (later referred to as JWP) have recently
shown that the problem can be avoided by casting Maxwell equations in a form which explicitly
guarantees that∇ · E = 0 will be satisfied by the solution in vacuum (spectrally polluted
solutions manifestly violate this condition). In the JWP formulation the variational integral is

Qvac
curl +Qant + Svac

curl = 0 (45)

with

Qvac
curl =

∫ ∫
V

RJp{F ∗ ·E − c2

ω2
((∇× F ∗) · (∇×E) + (∇ · F ∗)(∇ ·E))} dϑ dψ

Qant= 4π i

ω

∫ ∫
V

RJp

{
F ∗ · Jant− c2

ω2
(∇ · F ∗)(∇ · Jant)

}
dϑ dψ (46)

Scurl = − c
2

ω2

∫
Spl

RNτ {uψ · (F ∗ × (∇×E))} dϑ.

In the plasma this formulation would guarantee that the solution satisfies∇ · D = 0,
but is difficult to implement because of the appearance of second-order derivatives in the
variational integrals. Fortunately, it is also not required, since the FLR wave equations have
three independent solutions: we have never observed pollution in the plasma region with the
TORIC code. Since the variational integral has a different form in vacuum and in the plasma,
on the other hand, the two regions must be treated independently, coding explicitly the surface
integralsScurl andSpl at the plasma–vacuum interface. In the absence of FLR currents in the
plasma these conditions impose the continuity of the Poynting flux through this surface. A
physical interpretation of the FLR contributions to the surface integrals from the plasma side
has been given in [27]; in practice, for realistic values of the plasma pressure at the edge, these
terms are negligibly small.

5. The spectral ansatz

5.1. The variational integral in the spectral representation

We now assume a solution of the form

Eα = einϕϕ
+∞∑

m=−∞
Emα (nϕ;ψ) eimϑ. (47)

Because of axisymmetry there is no coupling between differentnϕ components; in the follow-
ing, the argumentnϕ will usually be omitted. With this ansatz, using the set of test functions

F = F (m)(ψ) eimϑ einϕϕ −∞ < m < +∞ (48)

the Galerkin equations become∑
m′

∫ ∫
RJp ei(m′−m)ϑ(F (m)∗(ψ) · Qop(m,m′) ·E(m′)(ψ)) dϑ dψ

+
∑
ψs

∑
m′

∫
RNτ ei(m′−m)ϑ(F (m)∗(ψs) · Sop(m,m′) ·E(m′)(ψs)) dϑ

= 4π i

ω

∫ ∫
RJp e−imϑ(F (m)∗(ψ) · JA(nϕ, ψ, ϑ))dϑ dψ (49)
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for eachm, whereQop is a bilinear operator of the form

F (m)∗(ψ) · Qop(m,m′) ·E(m′)(ψ)

=
∑
α

∑
β

{
dFm∗α
dψ

0αβ(m, 2;m′, 2)
dEm

′
β

dψ
+

dFm∗α
dψ

0αβ(m, 2;m′, 1)Em′β

+Fm∗α 0αβ(m, 1;m′, 2)
dEm

′
β

dψ
+ Fm∗α 0αβ(m, 1;m′, 1)Em′β

}
. (50)

The operatorSop has a similar representation, except that it does not contain derivatives of
F ∗. The evaluation of the coefficients0αβ is lengthy but straightforward, and will be omitted
for brevity; a complete list can be found in [28].

The coefficients0αβ in equation (49) are functions of bothψ and ϑ . At constant
ψ , therefore, equations (48) have the form of a discrete convolution between the Fourier
components of the quantities0αβ and those of the electric field, weighted with the Jacobian
RJp. Thus, the spectral ansatz transforms the partial differential wave equations into an infinite
set of ordinary differential equations, whose coefficients can be efficiently evaluated using the
fast Fourier transform (FFT). In numerical implementation, the Fourier expansions must be
truncated to include a finite number of terms; this number must be large enough to allow a
good reconstruction of the sharp poloidal variation of the coefficients of the plasma current in
the presence of cyclotron resonances, and of the short-wavelength ion Bernstein waves in the
solution (47). These conditions can be uncomfortably severe, particularly in the outer region
of large plasmas; but at least in principle, convergence can be achieved if there is sufficient
damping.

5.2. Evaluation of the orbit integrals

An important advantage of the spectral ansatz is that it puts the integral along the parallel
trajectories of the particles which appear in equations (19), (24) and (31) into a form which
is analytically tractable. Thus, for example, in the zero Larmor radius terms in the plasma
current we have

L̂E+ =
∑
m′
L̂(ψ, ϑ; km′ζ )Em

′
+ (51)

with

L̂(ψ, ϑ; km′ζ ) = 1−
∑
α

ω2
pα

ω2
(−xoαZ̃(x1α)). (52)

HereZ̃ is the toroidal plasma dispersion function (TPDF)

−xoαZ̃(xnα) =
∫ +∞

−∞
du

e−u
2

√
π

{
− iω

∫ t

−∞
ei
∫ t
t ′ k

m′
ζ vth(x

′′
nα−u′′) dt ′′ dt ′

}
(53)

with argument

xn,α = xn,α(m′, ψ, ϑ) = ω − n�cα

km
′

ζ vthα
(54)

where

kmζ (ψ, ϑ) = kmnϕ‖ = m

Nτ
sin2 +

nϕ

R
cos2 (55)

can be regarded as the local parallel component of the wavevector of them′th Fourier component
of the electric field. The operatorŝR andP̂ can similarly be expressed in terms of the TPDF
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of argumentsx−1,α, x0,α, respectively, and the FLR coefficientsλ̂2 and ρ̂2 can similarly be
expressed in terms of the TPDF of argumentx±2,α.

For large argument,|xn| � 1, Z̃ has the same asymptotic behaviour as the Fried-Conte
plasma dispersion function of the uniform plasma [29]

Z(xn) = 1√
π

∫ +∞

−∞

e−u
2

u− xn du + i
√
π e−x

2
n (56)

to which it reduces exactly in the limit of a uniform magnetic field. In this limit,L̂, R̂, P̂
become the usual expressions for the elements of the plasma dielectric tensor in the zero
Larmor radius approximation; similarly,−k2

⊥λ̂
2, −k2

⊥ρ̂
2, −k2

⊥λ̂
o and−k⊥k‖ξ̂0 reproduce the

appropriate finite Larmor radius corrections toε. Due to the toroidal inhomogeneity of the
static magnetic field, on the other hand,Z̃ differs appreciably fromZ in the resonance layer
|xn| = O(1) where spatial dispersion and damping are strong; the most important effect is an
appreciable broadening of the width of the resonance domain.

It is also important to note that if the magnetic field has a non-vanishing poloidal component
the argument of̃Z in equation (53) depends explicitly on the poloidal numberm′: in the Fourier
representation each poloidal component of the electric field elicits a different response from
the plasma. A practical consequence is that the number of timesZ̃ has to be evaluated is very
large, and can easily dominate the CPU time consumption unless a very efficient algorithm is
used. It is clearly out of question to evaluate the double integral (53) as it stands.

5.3. Approximations of toroidal plasma dispersion functions

The time integral in equation (53) has to be formally evaluated according to the Landau
prescription, Im(ω) → 0+. If this limit is taken literally, however, the TPDF behaves
resonantly not only at the harmonics of the cyclotron frequency, but also at the harmonics
of the toroidal bounce frequencies of passing and trapped particles [30, 31]. This is not
only analytically and numerically untractable, but in most cases also physically incorrect.
As discussed by [32], collisional phase diffusion efficiently destroys the phase memory of
the particles, thereby eliminating the bounce frequency dependence of the plasma response.
Hamiltonian stochasticity induced by repeated resonant wave–particle interactions can also
have the same effect [33].

Because of phase diffusion, only the contribution from the last stationary point in theτ

integral, i.e. from the last transit through a cyclotron resonance, has to be taken into account
in equation (56). The resulting form of the TPDF has been discussed in [34–40]. A thorough
treatment is due to Lamalle [38, 39] who has also indicated how to evaluate the velocity integrals
for general non-Maxwellian distribution functions. More drastic simplifications, however, are
required here to keep the execution time within reasonable limits. A possible approach, based
on the assumption that ions cross the resonance layer with constant velocity and that only
quadratic terms need to be retained in the expansion of the phase around the stationary point,
has been suggested in [35, 36]. Unfortunately, when approximated in this way, the imaginary
part ofZ̃ is not positive definite. As noted in [37], this gives rise to difficulties in interpreting
the power balance, since it makes the local power deposition by ion cyclotron damping negative
(plasma ‘cooling’) in some regions, even if the ion distribution is Maxwellian. Using his more
accurate treatment of particle motion, Lamalle [38] has shown that the local power deposition
in a Maxwellian plasma is positive defined everywhere, as one would expect.

An accurate approximation of the TPDF which avoids non-physical oscillations of Im(Z̃)

in the asymptotic region has been proposed in [41]. Following this reference, in TORICZ̃ is
approximated by the ordinary plasma dispersion functionZ with the argument evaluated using
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an appropriate ‘effective’ parallel wavenumber

−x0Z̃(xn) ' −x̄0Z(x̄n) x̄n = ω − n�c

(k‖)effvth
(57)

where(k‖)eff is given by

(k‖)eff ' km′ζ
√

1 + 4γ − 1

2γ
(58)

with

γ '
(

ω

2k2
‖Rvth

)(
− 1

R

∂R

∂ϑ

)
sin2 (59)

evaluated at the cyclotron resonance. This equation can be understood by noting that
Lres ' (2Rvth/n� sin2)1/2 is the resonance length for a single ion; the projection of this
length in the poloidal plane adds nonlinearly to the thermal Doppler broadening(k‖vth/ω)R

of the cyclotron resonance layer. In particular(k‖)eff remains finite even in the limitkm
′

ζ → 0

(k‖)eff →
(

ω

2Rvth
sin2

)1/2

for k‖ → 0. (60)

Equations (58)–(60) take advantage of the efficient algorithms available to evaluate the function
Z [42].

6. Boundary conditions in the spectral representation

6.1. Regularity conditions on the magnetic axis

The Cartesian components ofE on the magnetic axis must be independent fromϑ

EX(0) =
(

1

Nτ

∂Z

∂ϑ

)
0

Eψ(0, ϑ) +

(
1

Nτ

∂X

∂ϑ

)
0

Eη(0, ϑ)

EZ(0) = −
(

1

Nτ

∂X

∂ϑ

)
0

Eψ(0, ϑ) +

(
1

Nτ

∂Z

∂ϑ

)
0

Eη(0, ϑ). (61)

This completely defines the harmonic contents of the electric field components atψ = 0. It is
convenient to write the resulting conditions in rotating components. Defining(

1

Nτ

∂Z

∂ϑ

)
0

=
∑
m

Zm eimϑ

(
1

Nτ

∂Z

∂ϑ

)
0

=
∑
m

Xm eimϑ (62)

we obtain

0=
∑
m′
(Z(m−m

′) ∓ iX(m−m
′))(E

(m′)
ψ (0)± iE(m

′)
η (0))

0= E(m)ζ (0)
(63)

for all m 6= 0. If magnetic surfaces approach circular shape asψ → 0, then
X−1 = −X1 = i/2, Z−1 = Z1 = 1/2, and all other coefficients vanish. Equations (63)
then reduces to

E1
ψ + iE1

η = 0 E−1
ψ − iE−1

η = 0 Emψ = Emη ≡ 0 for all otherm (64)

These conditions suffice to guarantee that the differential operators∇ ·E and∇×E (hence
the wave magnetic fieldB) remain finite on the magnetic axis. Additional conditions on
the derivatives, which we omit for brevity, should in principle be imposed to ensure thatB

and∇ · E are also independent fromϑ atψ = 0. These conditions, however, are enforced
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numerically to a good approximation by the divergent behaviour of the appropriate elements
of the metrics forψ → 0. As a consequence, it makes almost no difference whether the
additional conditions are explicitly taken into account or not (both options are available in the
code).

6.2. Boundary conditions at the plasma edge

To implement the boundary conditions required by the different forms of variational integrals
in plasma and in vacuum, the plasma–vacuum interface is represented in the radial mesh
by two coincident points, representing its plasma and vacuum side, respectively. On each
side the appropriate surface contribution is added to the matrix of the discretized system (cf
equations (49) and (50)), expressed in terms of the field components on the other side of the
same surface. This gives two natural boundary conditions, which ensure the continuity of the
power flux through the plasma surface. In addition, the continuity of the components of the
electric field tangential to this surface must be separately imposed

Emη |p = Emη |v Emζ |p = Emζ |v (65)

for each poloidal Fourier component.

6.3. Boundary conditions at the Faraday shield, the antenna, and the wall

The Faraday screen is modelled by imposing

cos(2− αF)(E
m
η |p− Emη |v)− sin(2− αF)(E

m
ζ |p− Emζ |v) = 0

sin(2− αF)E
m
η |p + cos(2− αF)E

m
ζ |p = sin(2− αF)E

m
η |v + cos(2− αF)E

m
ζ |v = 0 (66)

at ψ = ψFS, whereαF is the inclination of the screen blades to the horizontal (toroidal)
direction. Often the surfaceψ = ψFS is taken to coincide with the plasma surface, in which
case equations (66) simply replace conditions (65).

The antenna is modelled by a current sheath

JA = Nτ

Jp

∑
nϕ

J s(ϑ) einϕ ϕδ(ψ − ψA)(cos(2− αA)uη + sin(2− αA)uζ ) (67)

at the surfaceψ = ψA, whereJ s is a line current density (A m−1), andπ/2 +αA is the angle
made by the antenna conductors with the static magnetic field. The wave magnetic field tangent
to the surfaceψ = ψA is then discontinuous, and the jump conditions (67) for the tangential
HF magnetic field in the spectral representation give the two natural boundary conditions

c2

ω2

∑
m′

∫
RNτ ei(m′−m)ϑ((∇×Em′)ζ )ψ=ψA =

4π i

ω

∫
RNτ e−imϑJ s(ϑ, nϕ) cos(2− α) dϑ

c2

ω2

∑
m′

∫
RNτ ei(m′−m)ϑ((∇×Em′)η)ψ=ψA = −

4π i

ω

∫
RNτ e−imϑJ s(ϑ, nϕ) sin(2− α) dϑ

(68)

which are manifestly equivalent to the condition

[Scurl]ψA = Qant (69)

The right-hand side of equation (60) is the forcing term of the whole system. In addition, we
must require continuity of the parallel electric field across the surface of the antenna

[Emη ]ψA = 0 [Emζ ]ψA = 0 (70)
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for all m. Except for the forcing term, the conditions at the antenna are identical in structure
to those at the plasma edge, and are imposed in the same way.

Finally, the conditions at the metallic wall translate into

Emη (1) = Emζ (1) = 0 (71)

again for allm.

7. The power balance

7.1. The local power balance in the spectral representation

Identifying in equation (52)F with E and taking the imaginary part, we obtain

−Re
∑
m

{∫ ∫
RJp e−imϑ(E(m)∗(ψ) · JA(nϕ, ψ, ϑ))dϑ dψ

}
= ω

4π
Im

∑
m

∑
m′

{∫ ∫
RJp ei(m′−m)ϑ(E(m)∗(ψ) · Qop ·E(m′)(ψ)) dϑ dψ

}
.

(72)

This is an exact consequence of Vlasov–Maxwell equations. The left-hand side is the power
launched by the antenna, but the integrand of the right-hand side differs from the local rate of
dissipation by the divergence of a vector which represents a reversible transport of oscillation
energy by the hot plasma waves. This difference averages to zero on each magnetic surface.
The concept of irreversible HF power dissipation, moreover, is meaningful only for times
much longer than the average collision time, and therefore typically also than the transit time
of thermal particles in the tokamak. Hence, it will suffice to consider the local dissipation rate
averaged on each magnetic surface, whose form has been discussed in [25] (we recall that the
difference betweenPabs(ψ) and the integrand of equation (72) is the divergence of the kinetic
power flux). We now enumerate the various contributions toPabs(ψ).

7.1.1. Fundamental ion cyclotron absorption.According to [25] we can writeP 1
i in two

equivalent ways

P 1
i (ψ) =

ω

8π

∑
m

∑
m′

∫
RJp ei(m′−m)ϑ {E(m)∗+ (ψ){Im (L(ψ, ϑ, km

′
ζ ))

+Im (L(ψ, ϑ, kmζ ))}E(m
′)

+ (ψ)}

= ω

4π
Re

∑
m

∑
m′

∫
RJp ei(m′−m)ϑ {E(m)∗+ (ψ)Im (L(ψ, ϑ, km

′
ζ ))E

(m′)
+ (ψ)} dϑ.

(73)

The power balance has been implemented in the last, asymmetric form, which is more
convenient numerically.

7.1.2. Electron Landau damping.

P 0
e (ψ) =

ω

4π
Re

∑
m

∑
m′

∫
RJp ei(m′−m)ϑ {E(m)∗ζ (ψ) Im (P (ψ, ϑ, km

′
ζ ))E

(m′)
ζ (ψ)} dϑ. (74)
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7.1.3. Ion second-harmonic absorption.

P
(2)
i (ψ) = − ω

8π
Re

∑
m,m′

c2

ω2

∫
RJp ei(m′−m)ϑ {∇⊥ · (R ·Em

⊥ + iuζ × R ·Em
⊥)
∗

×Im (λ̂
(2)
i (ψ, ϑ; km

′
ζ )) · ∇⊥ · (R ·Em′

⊥ + iuζ × R ·Em′
⊥ )} dϑ. (75)

7.1.4. Electron transit time damping.

P TT
e (ψ) = − ω

4π
Re

∑
m,m′

c2

ω2

∫
RJp ei(m′−m)ϑ {(∇⊥ ×Em

⊥)
∗

·Im (2λ̂0(ψ, ϑ; km′ζ )) · (∇⊥ ×Em′
⊥ ) dϑ. (76)

7.1.5. Mixed electron term.

Pmxd
e (ψ) = ω

8π
Re

∑
m,m′

c2

ω2

∫
RJp ei(m′−m)ϑ {((∇⊥ ×Em

⊥)
∗ · uζ ) Im (ξ̂0

e (ψ, ϑ; km
′

ζ ))(k
m′
ζ E

m′
ζ )

+(kmζ E
m
ζ )
∗ · Im (ξ̂0

e (ψ, ϑ; km
′

ζ )) · ((∇⊥ ×Em′
⊥ ) · uζ )} dϑ. (77)

7.2. The global power balance

By integrating equations (73)–(77) over the plasma volume, the total power absorbedPabsand
its repartition among different species (ion and electrons) is obtained. A consistency check is
offered by the fact that the total absorbed power summed over species must be equal to the
power radiated by the antenna

Pant= 1

2
Re

∑
m

E(m)∗η (ψA) · Ĵ (m)s (78)

with

Ĵ (m)s =
∫
RNτ e−imϑJs(ϑ) dϑ. (79)

In additionPabs must be equal to the electromagnetic power flux across the magnetic surface
ψ = ψA toward the plasma centre, which in spectral representation can be written

Pem= c

8π

∑
m,m′

∫
RNτ ei(m−m′)ϑ {E(m)∗

⊥ × (∇⊥ ×Em′
⊥ ) · uψ } dϑ. (80)

Comparison ofPabs with bothPant andPem gives an idea of the numerical accuracy of the
solution.

7.3. Electron Landau damping of ion Bernstein waves

As ion Bernstein (IB) waves propagate away from the mode-conversion layer, their wavelength
decreases rapidly, until the small Larmor radius (FLR) approximation finally breaks down.
Using the FLR expansion outside its validity domain leads to numerical difficulties and to
physically wrong results. Among the latter is the fact that electron Landau damping (ELD)
of IB waves is grossly underestimated as soon as the conditionλi � 1 is violated. In the
FLR approximation ELD is largely suppressed by electromagnetic corrections [43]. The
internal cancellations in the dispersion relation responsible for this effect, however, hold only
to first order inλi , so that ELD becomes increasingly important again as the wavelength of IB
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waves decreases. To obtain reliable power deposition profiles in mode conversion scenarios,
therefore, one must ‘correct’ the FLR wave equations to take ELD of IB waves into account.
It is possible to simulate the amount of ELD predicted by the local dispersion relation, without
altering the structure of the wave equations and without affecting damping of the fast wave
or the efficiency of mode conversion, by adding an appropriate imaginary part to the FLR
coefficientσ (2) = (λ(2) + ρ(2))/2

δσ (2) = −iσ (2)
Im (n2

⊥|IBW)

Re(n2
⊥|IBW)

if Re (n2
⊥|IBW) > 0 (81)

where the imaginary part ofn2
⊥|IBW is obtained by solving the ‘quasi-electrostatic’ dispersion

relation [43]

0=
∑
i

ω2
pi

�2
ci

(
1− I0(λ̃i) e−λ̃i

λ̃i

− 2
2∑
n=1

In(λ̃i) e−λ̃i

λ̃i

$ 2

$ 2 − n2

)
+

n2
‖Pe

n2
⊥ − Pe

(82)

with λ̃i = k2
⊥v

2
thi/2�

2
ci,$i = ω/�ci, and

Pe = −
ω2

pe

ω2
x2

0eZ
′(x0e). (83)

It might at first sight seem non-physical to simulate ELD by modifying the coefficient of
a differential operator which acts only on the perpendicular components of the wave electric
field. A more natural choice would be to modifŷP or its FLR correction (the corresponding
operator is also optionally coded in TORIC, although never important). It is not difficult
to see, however, that in this way one would affect mostly electron Landau damping of the
compressional wave, which is not the desired effect. It can be shown, on the other hand, that
the factor which multipliesσ (2) on the right-hand side of equation (81) is essentially the ratio
|Ez/Ex |2 for the IB wave, so that the damping introduced is not only affecting this wave, but
is actually also proportional to|Ez|2, as one would expect [43].

7.4. Stochastic ion Landau damping of ion Bernstein waves

For low values of the toroidal wavenumbernϕ ELD is too weak (although never entirely
vanishing if the poloidal component ofB0 is taken into account) to ensure that IB waves are
completely damped before reaching the plasma edge. In this case we add toσ (2) a correction
which simulates the onset of perpendicular ion Landau damping whenk⊥ρi exceeds a certain
value

δσ (2)

σ (2)
= −iK1

(
1− λ̃crit

λ̃m

)4

e−K2x
2
⊥ if λ̃m > λ̃crit (84)

wherex⊥ = ω/k⊥vthm, andK1, K2, andλ̃crit, are parameters which can be adjusted by the
user. Thẽλcrit-dependent factor provides a smooth transition between the undamped and the
damped region, and makes sure that all damping occurs far from the mode conversion region,
and does not interfere with mode conversion itself and with the reflection of the fast wave from
the ion–ion cut off.

At high harmonics,ω � �ci, perpendicular ion Landau damping arises due to the onset
of Hamiltonian stochasticity in the ion motion in an electrostatic wave propagating nearly
perpendicularly toB0 [44, 45]. Stochasticity around the fundamental and first harmonic is
also theoretically predicted [46]; attributing the form (84) to the resulting damping, however,
is arbitrary although convenient.

In the code separate bookkeeping is made of the power absorbed by thisad hocdamping,
while ELD of IB waves is obviously attributed to the electron. The sum of these two absorption
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terms, in any case, should not be confused with the amount of power mode-converted to IB
waves in the first place. Indeed, residual ion cyclotron and electron Landau damping can
damp these waves even before they reach the region where either ELD sets in orλm > λcrit.
In a global code the efficiency of mode conversion cannot be easily ‘measured’, since it is
impossible to split the power flux and the absorbed power density into separate contributions
from the individual WKB solutions of the local dispersion relation. It is, nevertheless, usually
possible to distinguish qualitatively between the various damping mechanisms from the radial
position of the respective absorption peaks.

7.5. Regularization of Alfv́en resonances

In the ion cyclotron frequency range Alfvén resonances (ω < �ci) or lower hybrid resonances
(ω > �ci)

n2
‖ − S ' 0 (85)

can occur at low density in the plasma periphery. To reduce the numerical problems due to
these quasi-singularities of the FLR wave equations, an enhanced ‘collisional’ damping can
be used, by adding tôS a term of the form

δŜ = iKawr|Re(R)| exp

{
−Q2

awr

(n2
‖ − Re(S))2 + Im (S)2

(Re(R))2

}
. (86)

The parametersKawr andQawr can be adjusted by the user; valuesKawr ' 0.1 andQawr ' 10
usually ensure that damping is localized near the singularity and has a negligible effect on the
overall power balance, yet is sufficiently strong to ensure a well behaved solution. In the code
separate bookkeeping is made of the amount of damping due toδŜ. Physically, if power is
absorbed by collisional broadening of wave resonances, it should be attributed to the electrons.

8. The order reduction algorithm and other options

The order reduction algorithm (ORA) was introduced in [22] to cure the shortcomings of the
zero Larmor radius approximation without renouncing its simplicity. For this purpose, the
zero Larmor radius ion current is ‘corrected’ by adding the appropriate FLR corrections to the
dielectric tensor in algebraic instead of differential form.

In TORIC, this is implemented by replacinĝR andL̂ (equations (18)) with the quantities

R̂eff = R̂ − ρ̂(2)n2
⊥|FW L̂eff = L̂− λ̂(2)n2

⊥|FW (87)

whereρ̂(2) andλ̂(2) are given by equation (24), andn2
⊥|FW is the perpendicular index of the

compressional wave, obtained by solving the local WKB dispersion relation including FLR
corrections. In the limit of negligible electron inertia, which is sufficient for the fast wave, this
dispersion relation is

σ (2)n4
⊥ + ((n2

‖ − Ŝ) + (n2
‖ − R̂)λ̂(2) + (n2

‖ − L̂)ρ̂(2))n2
⊥ + (n2

‖ − L̂)(n2
‖ − R̂) = 0. (88)

Care must be taken to choose the fast wave root throughout: in the evanescence regions between
cut off and confluence with the ion Bernstein wave, it is the root with a positive imaginary part.
The FLR corrections tôR andL̂ provide the correct amount of damping of the fast wave near
first-harmonic cyclotron resonances, and eliminate the singularity of the cold limit at ion–ion
resonances. Too sharp ion–ion resonances (in particular when the fundamental of the minority
does not coincide with the first harmonic of the majority) can be regularized as described in
section 7.5.
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Recently Jaegeret al [50] made a detailed analysis of the ORA in toroidal geometry, point-
ing out that there are, in principle, different realizations of this scheme. In our version of the
ORA only the ion FLR current is modified by replacing the second-order differential operators
with k2

⊥ as discussed earlier. In our opinion, this is the most natural choice, since in the IC
frequency range the FLR electron current does not give rise to short-wavelength solutions (as
long as their very small contribution toσ (2) is neglected). There is, therefore, no advantage in
performing the same substitution in electron terms, which, moreover, depend on thea priori
unknown direction ofk⊥. To avoid misunderstandings, let us stress that, if the poloidal com-
ponent of the static magnetic field is taken into account, the ORA is not completely free from
short-wavelength features: near ion-hybrid and Alfvén resonances the compressional wave
can mode-convert directly to the shear Alfvèn wave. This feature is not specific of the ORA,
but, rather, is characteristic of the cold-plasma (zero Larmor radius) approximation, and is
non-physical unless the plasma pressure is so low thatβ � me/mi , a condition which is prac-
tically never satisfied in tokamak plasmas. The FLR effects euristically included in the ORA to
some extent reduce the non-physical excitation of the shear wave; it is nevertheless generally
safer to neglect the poloidal component of the static magnetic field when using the ORA.

A number of additional options has been incorporated in TORIC, either to allow
comparison with simpler approximations, or to improve modelling, particularly of outer plasma
layers. In the first group, it is possible to omit, separately or simultaneously: the parallel electric
field in the plasma,Eζ = 0; the broadening of ion cyclotron resonances due to toroidicity; the
poloidal component of the confining magnetic field; and the finite Larmor radius contributions
to the ion and electron HF currents. In the second group the most important option is the
possibility of assuming that a tenuous, cold plasma extends up to the wall, whose density can
also be modulated inϑ to make it vanish in the antenna region. In the interest of brevity,
however, we will not discuss these options further.

9. Radial discretization and numerical implementation

9.1. Implementation of the spectral representation

As mentioned earlier, the spectral ansatz (47) together with the approximations to the toroidal
plasma dispersion function discussed in section 5 transforms the integrodifferential FLR wave
equations into a system of coupled ordinary differential equations in the radial variableψ ,
whose coefficients are evaluated using the fast Fourier transform (FFT). For optimal efficiency
of the FFT the numberMc of poloidal Fourier components used in the representation of the
coefficients is always a power of two. The numberMs = 2Mmax+1 of poloidal modes kept in the
representation of the solution, on the other hand, is always odd, so that−Mmax6 m 6 Mmax.
To avoid having to check the summation boundaries in the convolutions between coefficients
and unknowns, and to make optimal use of the information aboutϑ dependence of the
coefficients, the conditionMc > 2Mmax is imposed. To reconstruct the fields after solution of
the radial equations the inverse Fourier transform must be taken. To be able to use the same
FFT routine as for the evaluation of the coefficients, the arrays of field components on each
magnetic surface are extended toMc elements by adding zeros in the outer positions.

Construction of the FFT of orderMc requires information fromMc equally spaced points
in ϑ . From this obvious statement it becomes clear thatMc must be sufficient to allow a good
resolution of the poloidal variation of the resonantZ-functions on each magnetic surface, while
Ms must be sufficient to resolve numerically the shortest wavelength waves occurring in the
solution. To some extent these two criteria are independent from each other; it is nevertheless
clear that the most reasonable choice ofMc is the smallest power of two greater than 2Ms.
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9.2. The radial discretization

To implement the finite element (FEM) discretization, the interval 06 ψ 6 1 is subdivided
intoNp intervals (elements), and the solution is assumed to have the form

Emα (ψ) =
∑
r

2∑
ν=1

Emα,ν(r)Ĥr,ν(ξr ) (89)

whereξr (−16 ξi 6 1) is the normalized coordinate on elementr, and the support functions
Ĥr,ν(ξr ) are

Ĥr,0(ξr) = H0(ξ) − 16 ξ 6 1

Ĥr,1(ξr) =
{
(ψr+1− ψr)H1(ξ) if 0 6 ξ 6 1

(ψr − ψr−1)H1(ξ) if (−16 ξ 6 0)
(90)

in terms of the Hermite cubic interpolating polynomialsH0 andH1, defined on the master
interval−16 ξ 6 +1 as

H0(ξ) = (|ξ | − 1)2(2|ξ | + 1)

H1(ξ) = (|ξ | − 1)2ξ. (91)

With these normalizations,E0
α(r) andE1

α(r) are the values ofEα and of its first derivative,
respectively, at the mesh pointψ = ψr . Cubic Hermite FEM have the distinctive advantage
of allowing solutions (wave electric field) with continuous derivative (wave magnetic field)
everywhere. They were introduced for wave problems in [21].

9.3. The solver

The discretized system has a block structure

Li · xi−1 + Di · xi + Ri · xi+1 = yi i = 1, . . . , Np (92)

with

L1 = 0 RNp = 0. (93)

Eachxi is a (6Ms)-dimensional complex vector made up of the Fourier components ofE

and dE/dψ atψ = ψi . Adding boundary conditions at the plasma edge and at the antenna
increases the number of elements by two, but does not alter this structure; the antenna current
contributes toyi atψA. The other boundary conditions are easily implemented by modifying
the appropriate blocks of coefficients.

The ansatz

xi−1 = Ei−1 · xi + Fi−1 (94)

leads to the upward recursive relation

Ei = −(Di + Li · Ei−1)
−1 · Ri

Fi = (Di + Li · Ei−1)
−1 · (yi − Li · Fi−1) (95)

to be initialized byE0 = 0,F0 = 0. The downward recursion (95) then begins withxNp = FNp.
The matrices to be inverted are LU-decomposed and the equations (95) are implemented using
LINPAK routines. The solver based on this method has the advantage of simplicity and is
relatively efficient, but is very memory-consuming: forMs poloidal modes andNψ radial
points ((6×Ms)

2 × Nψ ) complex elements need to be stored. The size of the corresponding
arrays limits the largest mesh which can be handled in a given computer.
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9.4. Accuracy and convergence

It is difficult to validate rigorously a code like TORIC, since no analytic solution of the IC
wave equations in tokamaks is known. To test the code, one can check the consistency of the
power balance, and compare runs with increasingly finer mesh. Most importantly, one should
systematically check the results of TORIC with the expectations from the physics of IC waves
propagation and absorption. For this purpose, a useful tool is the code FELICE, which solves
the same set of equations as TORIC in plane-stratified geometry (i.e. in a plasma slab with
the same parameters as the real plasma along the equatorial plane, and neglecting the poloidal
component of the static magnetic field). FELICE is much faster, and can use a much finer
mesh to ensure good resolution of short wavelength features, but cannot provide reliable power
deposition profiles. Comparison of TORIC with FELICE also allows us to identify specifically
toroidal effects.

The resistive loadPant = 0.5 Re(JA · E) and the power fluxPem through the plasma
surface evaluated by TORIC usually agree very well (better than one part in a thousand). Even
in runs with acceptable results, on the other hand, the total powerPabsdeposited in the plasma
can differ fromPant andPem by an amount between 0.5% and several per cent. This is due, in
part, to the additional integrations required to evaluatePabs. Inaccuracies due to the essential
boundary conditions at the plasma surface, and to a lesser extent at the Faraday screen and the
antenna, however, are likely to contribute as well. This is suggested, in particular, by the fact
that in situations in which the power absorption per transit is expected to be poor the agreement
betweenPabsandPant is often less satisfactory than in scenarios with good absorption. In the
experiments, poor absorption in the plasma core enhances parasitic effects near the surface,
including the production of impurities [47]; in TORIC it amplifies numerical inaccuracies at
the most sensitive points of the mesh, which are those corresponding to discontinuities (we
recall that in the complete absence of absorption the solution of the wave equations solved by
TORIC would diverge).

By far the most common cause of failure of TORIC is lack of convergence of the
poloidal Fourier representation of the solution. For a medium-size tokamak (ASDEX Upgrade,
R0 = 1.65 m, a = 0.5 m) 15 or 31 poloidal modes (with 32 or 64 poloidal mesh points,
respectively) are usually sufficient. In some scenarios, however, the poloidal variation of
the coefficients of the wave equations is too sharp to be represented by a truncated Fourier
series with a reasonable number of modes. The most difficult case we have encountered
was a hydrogen plasma with a minority of He++

3 ions. Since in this scenario IB waves
satisfy the small ion Larmor radius condition only marginally even close to the mode
conversion layer, it is practically impossible to have a sufficiently fine mesh for their numerical
resolution.

10. An example

As an example, we investigated harmonic heating of a deuterium plasma in ASDEX
Upgrade [48]. The magnetic configuration was assumed to have ellipticityη(a) = 1.6
and triangularityδ(a) = −0.15 at the plasma boundary, and a Shafranov shift of 4.5 cm.
The magnetic field was taken to be 2.1 Tesla on the magnetic axis, and the total current
0.75 MA. The density had a central value of 6.3× 10−19 per m−3 with a rather flat radial
profile, and the temperatures (Te = Ti ) reached 4 keV in the centre, with nearly triangular
profiles. The high central temperature is typical of discharges preheated by neutral beam
injection.
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(a)

(b)

Figure 1. Perpendicular index squared along the equatorial plane of ASDEX Upgrade, for the
toroidal modenϕ = 12 withm = 0: (a) fast wave; (b) ion Bernstein wave (full curve, real part;
broken curve, imaginary part).

10.1. Diagnostic tools

TORIC offers a number of diagnostic tools which can be used to understand the physics of a
particular IC scenario before solving Maxwell equations. Here we show, for the modenϕ = 12
with m = 0, along the equatorial plane: the perpendicular index of the fast and the IB waves
(figures 1(a) and (b)); the values ofλ(2) andρ(2) (figure 2); and the quantitiesδσ (2) which are
added toσ (2) = (λ(2)+ρ(2))/2 to take into account ELD and stochastic ion damping (figure 3).
Because of the flat density profile with high density up to the Faraday screen, the low-density
R cut off is outside the plasma. We also note that the imaginary part ofn2

⊥|FW in the vicinity
of ω = 2�D (which is located 11.3 cm to the low-field side of the magnetic axis) is mostly
due to the evanesce layer between the cyclotron harmonic resonance and the confluence with
the IB branch [49], rather than to IC absorption. In this region the two roots are approximately
complex conjugate, Im(n2

⊥)BW ' −Im (n2
⊥)FW, but this is not visible in figure 1 because of
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Figure 2. The coefficientsλ(2) (full curve, real part; broken curve, imaginary part) andρ(2) (purely
real; multiplied by 10 to make it visible on the same scale) along the equatorial plane.

Figure 3. The correctionδσ (2) due to electron Landau damping (full curve) and stochastic ion
damping (withK1 = K2 = λ̃crit = 1, broken curve) along the equatorial plane.

the widely different vertical scale. The optical thickness of the evanescence region, however,
is appreciably smaller than unity (η ' 0.07), and, therefore, we do not expect a large standing
wave ratio between the antenna and this layer. The contribution of cyclotron harmonic damping
to the imaginary part ofλ(2) is visible in figure 2; by comparison, the two contributions toδσ (2)

are quite small. Stochastic ion damping is assumed to set in more than 25 cm to the HF side
of the mode-conversion layer; nevertheless, assuming the threshold condition to bek⊥ρi > 1,
it peaks only slightly to the outside of the ELD contribution. The (negative) imaginary part of
n2
⊥|IBW due to ELD and stochastic damping is visible in figure 1(b) close to the inner plasma

edge.
Also interesting are the local values ofk

mnϕ
‖ and the corresponding values ofx0e= ω/k‖vthe

along the equatorial plane, which are shown in figure 4, again fornϕ = 12, andm = 0,±7
(the typical range ofm values in the centre of the plasma). These figures give an idea of
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(a)

(b)

Figure 4. (a) Local values ofkmn‖ for nϕ = 12 andm = 0 (broken curve) andm = ±7 (full curves)
along the equatorial plane. (b) Local values ofx0e= ω/kmn‖ vthe for nϕ = 12 and the same values
of m.

thek‖-spectral broadening due to the poloidal component of the static magnetic field. From
inspection of these figures, for example, one immediately concludes that taking this effect into
account is essential to evaluate correctly the quasilinear velocity-space diffusion coefficient for
fast wave current drive [20]. In the present case, the Fourier components with large negative
m will suffer only a weak ELD in the outer half of the plasma, in spite of the fact that for
m = 0 the parallel phase velocity is of the order of the electron thermal velocity over most of
the plasma cross section.

10.2. Field pattern and power deposition profiles

In figure 5 we show contour plots of the real part of the three componentsE±,E‖ of the wave
electric field in the poloidal cross section for the toroidal modenϕ = 12. Here 31 poloidal
modes were used (64 points in the poloidal angleϑ). Only the field inside the plasma is shown:
the electric field in the vacuum layer is appreciably larger, and would be the dominant feature
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if also plotted. The compressional wave is easily recognized between the antenna and the
plasma centre in all the components. The IB wave, on the other hand, is clearly visible to the
left of the centre only inE+, and to a lesser extent inEζ . This is easily understood by noting
that for the fast wave|E+/E−| ∼ |R̂/L̂| � 1; the IB wave, by contrast, is linearly polarized,
and its amplitude is comparable toE+|FW, hence much smaller thanE−|FW. The parallel field
is small for both waves (for a current of 1 A in the antenna, the maximum amplitude ofE−,
E+, andEζ , in the plasma are 9.7 V m−1, 2.3 V m−1, and 0.01 V m−1, respectively).

Figure 6 shows the power deposition profiles. Globally, 67.1% of the power is deposited
in deuterium by harmonic cyclotron damping, 12.45% in the electrons, mainly through the
IB waves, and the remaining 20.45% are absorbed via stochastic damping of the IB waves.
The broad, somewhat off-axis, peak of harmonic cyclotron heating is due to the finite vertical
extent of the large-field region, and is much larger than the Doppler width of the cyclotron
layer, even taking toroidal broadening into account. Electron Landau damping and stochastic
damping give rise to even broader deposition profiles; the latter, in addition, is peaked well
outside the others, so that the corresponding power density is low due to the large specific
volume at this radius.

By plotting the coefficientsEmψ againstmat different values ofψ (figure 7) the convergence
of the poloidal Fourier expansion can be tested. In this case 31 poloidal modes are enough
for ψ . 0.6, but clearly insufficient outside this radius. The results, fortunately, appear to be
relatively robust against such a lack of numerical resolution in the outer domain, as long as
IB waves are mostly absorbed in the inner region. On the one hand, the total absorbed power
agrees within 0.5% with the power radiated by the antenna. On the other hand, if the number
of poloidal Fourier components is halved, so that good convergence is further restricted to
ψ . 0.4, the field distribution patterns, the power deposition profiles and the global power
balance, are not greatly altered. In the contour plot of Re(E+) in the poloidal cross section
(figure 8) the compressional wave shows more up-down asymmetry than in figure 5(a), while IB
waves have a somewhat larger relative amplitude, but tend to follow more closely the magnetic
surfaces, a consequence of the reduced numerical resolution in the poloidal direction. To the
same cause one can attribute the fact that the power distribution profiles are slightly more
peaked (figure 9). The global distribution of power between the various channels (62.3% to
deuterium, 13.7% to the electrons, and 24% to stochastic ion damping) is very similar to the
previous case.

10.3. Results of the order reduction algorithm

Figure 10 is a contour plot of Re(Eψ) in the poloidal plane evaluated with the ORA for
the same plasma parameters and, again,nϕ = 12; figure 11 shows the corresponding power
deposition profiles. In this case 15 poloidal Fourier components (32 mesh points inϑ) and
200 radial points were used: the execution time was a factor∼15 shorter than in the case of
figure 5, and a factor∼4 than in the case of figure 8. One could decrease somewhat the number
of radial points without spoiling the results, but halving the number of poloidal components
(which would result in a further reduction of the execution time by a factor of∼4) appears to
be incompatible with acceptable convergence.

The field pattern of the fast wave is nearly identical to the previous case, including the
up-down asymmetry and the position of individual wavefronts. The elimination of mode
conversion, however, allows stronger focussing near the magnetic axis. As a consequence, the
profile of power deposition to the deututerons is appreciably narrower. The global repartition
of the power is 82.25% to the ions and 16.75% to the electrons.
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Figure 5. Field pattern in the poloidal plane for the
toroidal modenϕ = 12, with 31 poloidal Fourier
components. The real part (in phase with the antenna
current) is represented; broken contour lines refer to
negative values.
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Figure 6. Power deposition profiles for the toroidal modenϕ = 12, with 31 poloidal Fourier
components.

10.4. Toroidal wavenumber scan

It is clear that a satisfactory test of the code and a reliable comparison of different
approximations cannot be made on the basis of a single case. We have, therefore, made
a series of runs varying the toroidal mode numbernϕ , while keeping all other parameters
constant. In TORIC 15 poloidal components (32 poloidal points) were used for this scan.
In figure 12 we compare the fraction of power deposited in the different absorption channels
according to TORIC, to FELICE, and to TORIC with the ORA option as functions ofnϕ . The
fraction of power deposited in the various channels is remarkably similar in the three cases,
but there are also significant differences.

At low values ofnϕ (nϕ . 10), in particular, the fraction of power absorbed by the
deuterons approaches zero according to FELICE, and unity in the ORA approximation. The
full TORIC predictions are closer to those of the ORA approximation, reaching about 0.8
at nϕ = 0. The result of FELICE is a spurious feature of the plane-stratified model: in
this geometry the imaginary part of the plasma dispersion function which describes cyclotron
damping appears numerically to approach zero everywhere asnϕ → 0, while in reality it
should become proportional to a delta function

−x0Z(xn)→ ω

ω − n�c
− iπ δ

(
ω − n�c

ω

)
for k‖vth→ 0 (n > 1). (96)

The delta-function behaviour, on the other hand, is automatically picked up in TORIC by the
toroidal correction tok‖ discussed in section 5.3.

The predicted efficiencies of ELD agree well over the whole range. A closer look, however,
shows that both FELICE and the ORA approximation predict ELD to vanish exponentially as
nϕ → 0, while according to the full TORIC code it remains finite, although small, even at
nϕ = 0. This is due to the broadening of the effectivek‖-spectrum by the poloidal wavenumber
m in the presence of the poloidal static magnetic fieldBpol. In principle, this effect could be
taken into account also in the ORA; ifBpol 6= 0, however, runs for toroidal modes with lownϕ
in the ORA approximation are plagued by spurious excitation of the shear Alfvén wave, and,
therefore, do not give reliable results.
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Figure 7. Coefficients of the poloidal Fourier expansion ofEψ at four radial positions.

Figure 8. Contour plot of Re(Eψ) in the poloidal cross section with 15 poloidal Fourier
components.
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Figure 9. Power deposition profiles for the toroidal modenϕ = 12, with 15 poloidal Fourier
components.

Figure 10. Contour plot of Re(Eψ) in the poloidal cross section; order reduction algorithm with
200 radial points and 15 poloidal Fourier components.



30 M Brambilla

Figure 11. Power deposition profiles for the toroidal modenϕ = 12; order reduction algorithm
with 200 radial points and 15 poloidal Fourier components.

As mentioned in section 7.4, the region of efficient ELD is not fully opaque to IB waves,
and additional ‘stochastic damping’ is required to absorb these waves whenk⊥|IBWρi & 1.
In the present case it was necessary to takeK1 = 25 in equation (84) to obtain satisfactory
results. The amount of power dissipated in this way approaches 100% in FELICE when
nϕ → 0, since, in plane stratified geometry, this is the only dissipative mechanism which does
not vanish in this limit. In TORIC, by contrast, it remains more reasonably of the order of
20%. While according to FELICE it decreases rapidly with increasing toroidal mode number,
however, it remains relatively constant up to much larger values ofnϕ according to TORIC (in
the ORA approximation this absorption channel is, obviously, absent). This occurs primarily
at the expense of harmonic cyclotron heating of the deuterons, suggesting that most of the
discrepancy might be due to the fact that FELICE takes into account only the conditions in the
equatorial plane, where this absorption mechanism (which is proportional to the normalized
plasma pressureβ) is most efficient. In part, however, it might be a numerical effect, due to
insufficient resolution of the IB waves in the poloidal direction in the regionψ & 0.5. In a few
test runs with 31 poloidal modes (one example being the casenϕ = 12 presented previously)
stochastic damping was slightly lower, although still appreciably larger than according to
FELICE.

A real antenna always excites a relatively broad range of toroidal modes simultaneously.
The ASDEX Upgrade IC antenna consists of two strips 18 cm wide and separated by 20 cm,
excited with opposite phases. The toroidal Fourier spectrum of the current,JA(nϕ), is therefore
antisymmetric, and, at a frequency of 30 Mhz, has the first peak atnϕ ' 12. By convoluting the
specific antenna load for each mode (the radiated power for 1 A in theconductors) withJ 2

A(nϕ)

we have compared the radiated power spectrum predicted by TORIC with that predicted by
FELICE (the latter code evaluates the power spectrum and the antenna resistance automatically
in a single run). The results are shown in figure 13. Not surprisingly, the spectrum evaluated
by FELICE has appreciably more structure than the one obtained from TORIC. In plane-
stratified geometry individual poloidal modes can be eigenmodes, and can be selectively
excited if the single-pass damping is weak enough (in the present scenario damping might
be described as ‘moderate’: single modes are obviously visible, but the overall shape of the
spectrum is nevertheless determined by the shape ofJ 2

A(nϕ)). In toroidal geometry the poloidal
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(a)

(b)

Figure 12. Fraction of the launced power deposited (a) in the electrons, (b) in deuterium, and
(c) absorbed by ‘stochastic damping’ of IB waves, as functions of the toroidal wavenumbernϕ .

inhomogeneity of the propagation conditions provides an efficient smoothing of the excited
spectrum by strongly coupling all poloidal modes to each other. The spectrum evaluated with
the ORA is intermediate between those of TORIC and FELICE.

11. Conclusions

The TORIC code successfully solves the FLR integro-differential wave equations in the ion
cyclotron range of frequencies in toroidal axisymmetric geometry. Its peculiar feature is
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(c)

Figure 12. (Continued)

Figure 13. Power spectra (normalized to unity) predicted by TORIC, FELICE, and the ORA
approximation for the ASDEX Upgrade antenna.

the ability to describe mode conversion to short-wavelength ion Bernstein waves: although
expensive in computing time and memory, this is essential for a full coverage of the physics of
ion cyclotron heating and current drive in tokamaks. It allows, in particular, to make detailed
comparison with simpler, widely used approximations, such as plane-stratified geometry
and the order reduction algorithm. By providing reliable power deposition profiles in most
IC heating scenarios, TORIC has proved a useful tool for the interpretation of IC heating
experiments [31].
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