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This document describes the generic features of the FPP Fokker-Planck

Program which apply to both the standalone and the TRANSP versions of

FPP.  Features which are more specific to the TRANSP version are

described in the file source:trfpp.doc.

***************

I. INTRODUCTION 

***************

FPPRF is a computer program which solves a Fokker-Planck equation to

simulate the fast ions produced by neutral beam injection or ICRF

heating. It has evolved from an original version written by Rob Goldston

in 1977 to study neutral beam injection, and has been extensively

modified by Greg Hammett to handle ICRF heating, compression, and other

improvements.  It has been coupled with Dave Smithe's 3D ICRF wave code

SPRUCE.

Two versions of FPP are supported from the same fortran source: a

standalone version where the thermal plasma parameters (but not the fast

ions) are assumed to be fixed in time, and a complete version coupled to



the time-dependent transport analsysis code TRANSP.  This file documents

the standalone version of FPP.  TRFPP.DOC documents the TRANSP version.

The basic physics models and assumptions are outlined in the next

section.  References which contain more information are given at the

end. FPPRF is a research tool, and is therefore always under development

and testing. Caveat Emptor. 

******************************

Physics models and assumptions

******************************

FPPRF solves the bounce-averaged Fokker-Planck equation to find

the fast ion distribution function f(E,mu,r,t), as a function of

energy E, magnetic moment (or equivalently, pitch angle) mu,

minor radius r (generalized to non-circular flux surface shapes), and

time t:

d f(E,mu,r,t)

-------------  =  C(f) + Q(f) + S + R(f).

   d t

C is the bounce-averaged and linearized collision operator

(self-collisions are ignored, and the background species are assumed to

be Maxwellian) and includes energy slowing down, energy scattering, and

pitch angle scattering. Q is the complete bounce-averaged quasilinear operator

(similar to the operator used by Kerbel and McCoy) including E_plus and

E_minus, finite k_parallel, and full k_perp rho effects in the Bessel

Functions.  It includes Airy function and k_parallel corrections to the

wave-particle correlation time. S represents sources and sinks due to



neutral beam injection, charge exchange losses, and thermalization. R is

a radial transport operator and has options for  modelling radial

transport of fast ions due to ripple transport and neoclassical

transport, or an arbitrary transport level can be specified. Once f is

known, the program then calculates such interesting quantities as

charge-exchange spectra and neutron production rates, as well as

collisional heating of the thermal ions and electrons.

FPP uses an operator-splitting algorithm (similar to the ADI, or

alternating difference implicit, algorithm) to solve the 2-D

convection-diffusion equation on each flux surace.  It uses simple

upwind-differencing of the drag terms, which results in a slight

enhancement of the "temperature" of the fast ions of order dE/E, where

dE/E is the relative spacing of the energy grid (dE/E = 10% is a typical

value used for an FPP run).  The cross-derivative terms (d/dE d/dmu)

in the quasilinear operator are solved using a flux-limited algorithm

related to Boris's flux-corrected transport algorithm.

FPP is coupled to Dave Smithe's full wave ICRF package SPRUCE.  SPRUCE

is an improvement over the earlier Colestock-Smithe code SHOOT,

including general geometry plasma and vacuum vessel and improved

numerics.  SPRUCE solves a contracted second-order differential equation

for the fast wave including the effects of fundamental and second

harmonic ion damping, electron damping, and mode conversion.   The power

mode-converted to the Bernstein wave is estimated using the

order-reduction scheme outlined in Dave Smithe's paper.  It is assumed

that the mode-converted power is absorbed immediately by the electrons

before propagating elsewhere. SPRUCE uses a spectral representation in

the poloidal direction and a finite difference method (which is

numerically much more stable than the former shooting method) in the

radial direction.  The results can then be summed over kz to obtain a



full 3-dimensional solution. However, at the moment we only use a single

kz (which is assumed to be the dominant kz in the spectrum).

SPRUCE assumes that all ion species are Maxwellian and expands all of

the Bessel functions in the dielectric tensor through second order in

(kperp*rho)**2.  The minority ions are treated as a Maxwellian with the

same parallel temperature as calculated by FPP because the

Doppler-broadening of the parallel resonance is the dominant effect.

******************

Computational time

******************

A simple NBI run to equilibrium (300 msecs of tokamak time) in about 20-40

time steps on an 82 energy * 50 pitch angle * 10 radii can be done in

5-20 minutes on a Vax-8700, depending on the complexity of the beams.

A run with 20 radii including radial diffusion and 10 iterations with

the ICRF full wave code takes about 2-3 hours on a Vax-8700, and about

30-60 minutes if radial diffusion is ignored.

****************************

II. SETTING UP TO RUN FPPRF.

****************************

1. Create a subdirectory to contain your FPPRF work:

$create/directory [YOURNAME.fpp]



2. Copy the following files to your new [YOURNAME.fpp] area:

   transp$:[greg.fpp.test]testnb02.in - a sample NBI input file

   transp$:[greg.fpp.test]testcs05.in - a sample ICRF input file

These sample namelist files can be used as a guide.  You will need to

modify the input variables to match your specific case.

transp$:[greg.fpp]fpbasic.dft contains default values for the

namelist input variables, and a description of all of them.

3.  Define some logical names and commands needed to run FPP (it

may be useful to put this in your login.com file):

$ @transp$:[greg.fpp]fpprf_ini.com

4. Type "show process/quota" and make sure your paging file quota is at 

least 20000.  If not, ask Judy Benson to raise your paging file quota.

************************************************************

III.  Creating input files for FPPRF from SNAP'ed TFTR data:

************************************************************

$ run transp$:[greg.fpp.data]fpprep

This will prompt you for an FPPRF run name, a TFTR shot #, and a snap

try #.  It then reads the data in the snap archives, and produces the

*.in namelist file needed as input for FPPRF. You may then edit this

file to tailor the FPP run for your purposes. 

 



************************************

IV.  Executing FPPRF as a batch job:

************************************

First move to your fpp working directory:

$set default [YOURNAME.fpp]

Then use one of the following three commands, which are functionally

equivalent:

1. $ @fpprun RUNNAM !starts execution of FPPRF at your terminal. 

!This method is HIGHLY DISCOURAGED because it runs a compute

!intensive job at a high interactive priority.  Running on the

!vaxes can get frustratingly slow, and people do check to see

!if anyone is hogging computer time with an interactive job.

!This method should only be used for interactive debugging.

2. $ submit/notify/noprint/log=[YOURNAME.fpp] fpprun/param=(RUNNAM)

!submits FPPRF as a batch job, with the log file put in your

![.fpp]area instead of your top level area or printed.

!you must add the command "$set default [YOURNAME.fpp]"

!to the beginning of FPPRUN.COM for this to work right.

3. $ batch fpprun RUNNAM

! This accomplishes the same result as the above submit

! command, but in a conciser format, using the BATCH

! command written by Charles Karney.  Type "$setup batch"

! to initialize it, or "$help batch" for more info.



FPPRF needs the following input file:

RUNNAM.in  !this is a namelist format input file.

 

FPPRF produces the following output files:

RUNNAM.plt  !a plot file which can be seen by typing "xplot RUNNAM.plt"

RUNNAM.log  !the batch job log file which contains some interesting info

RUNNAM_xxx.fcx  !a 2-d ufile containing the CX signal ln f(Energy,time) at the

    !detector tangency radius xxx cm's.  This file can be plotted using

    !Doug McCune's interactive UGRAF2 program.

RUNNAM.in2 An output copy of all of the input namelist parameters,

including those read from the default namelist.

V.  How to prepare input files for simulating compression.

(To be added at some future date.)

*********************

VII.  Modifying FPPRF

*********************

You are encouraged to add new features and capabilities to FPP.

However, this needs to be coordinated with me to ensure that a single

official version of FPP is maintained and to avoid the proliferation of

thousands of versions and the duplication of effort that produces.  The

procedure is to:

1.  Tell me what you want to change and what your plans are.  I may be

able to give you some advice about how to achieve your goals most easily



and which routines need to be modified.

2.  Copy the routines you are going to modify out of SOURCE: and into

your own area.  Modify these routines to your satisfaction.

3.  Compile and link your own version of FPP with your newly modified

routines (the procedures fpprf_lnk.com and fppdb_lnk.com in

transp$:[greg.fpp] will do this), and check out your new routines to

make sure they work right.

4.  Let me know that your new routines are ready.  I will put them back

in the SOURCE: library where the OFFICIAL FPP routines are stored and

will recompile and relink the official FPPRF.EXE.

Because FPP is part of TRANSP and is run on the CRAY at Livermore and the

IBM at JET as well as on the VAX, you need to stick to standard fortran

when you change the code.  In particular, avoid DO-ENDDO blocks, keep

character names to 8 characters or less, and don't use "_" or "$" in

variable names.  Any subroutines which access the TRANSP common block

(TRCOM, or source:port.for) need to use local variable names which start 

with i, j, or z.  The main FPP common block FPPCOM should not have any

variables which start with i, j, or z, and the variable names must not

be identical to any variable names in in the TRANSP common block,

because both FPPCOM and TRCOM are included in some interface routines

between FPP and TRANSP.

Because of intrinsic differences between the CRAYs and VAXES, we

sometimes are forced to use machine-specific instructions.  In these

cases, the lines which end in "!@" are for the vax, while lines which

start in "c@" are for the CRAY.  The preprocesser program

transp$:[cra]vaxtoc is used to convert programs to run on the cray.



The BUILD procedure in fphome .cray will automatically build a complete

fortran source for FPP to be shipped to the CRAYs. 

With the exception of some library routines from Harry Towner, all of the

sources needed to compile and link FPPRF are in SOURCE: (which points to

transp$:[cmsref.*]).  SOURCE: contains the most recent

version of every file in TRANSP (so it contains hundreds of files).

SOURCE: is a list of special areas maintained by the CMS library system.

To get a directory of all of the FPP files, take the following steps:

$cms set library transp$:[cms_v3]   !points to the TRANSP CMS library

$cms show element fpp_standalone

The transp$:[greg.fpp...] areas contain a number of different types

of files, some of which are copies (sometimes out-of-date copies) of

things which are in SOURCE: 

transp$:[greg.fpp.test]

*.in Sample namelist inputs for various FPP runs.

*.plt Corresponding output plot files.

transp$:[greg.fpp]

FPP.DOC This file.

FPPRUN.COM Command procedure which runs fpprf.

*.inf various information files of interest

*.ind (and others) LISMAK files for finding local and global variables and

renaming.

FPPRF.EXE FPPRF program ready to run.



FPPDB.EXE FPPRF program ready to run with debug compiled

subroutines. 

FPPLIB.OLB Object library (compiled) of every FPPRF subroutine.

FPPLIBDB.OLB DEBUGgable object library of every FPPRF subroutine.

@FPPRF_MAK Will recompile the whole FPPLIB.OLB library.

@FPPDB_MAK Will recompile/debug the whole FPPLIBDB.OLB library.

@FPPRF_LNK Will relink a new FPPRF.EXE.

@FPPDB_LNK Will relink a new FPPDB.EXE.

@FPPRF_INI defines fpprf_inc: needed to recompile FPP routines.

@update subnam will update only subroutine subnam in FPPLIB.OLB.

@updatedb subnam will update only subroutine subnam in FPPLIBDB.OLB.

transp$:[greg.fpp.test]  results of standard test cases of FPP

transp$:[greg.fpp.test.testold]  older FPP test cases

transp$:[greg.fpp.now]  copy of the just the FPP related files in SOURCE:

*.for Subroutines called by FPPRF.

*.cmn common blocks which are included by various subroutines.

Listing some of the more important files in SOURCE:

FPPIN.NML 'include' file specifying the namelist input block.

FPPIN.OLY Olympus format definitions of all of the variables in

the namelist block FPPIN.NML.



FPPRF.FOR The main FPPRF subroutine.

FPPTOP.FOR Driver program for the standalone (no TRANSP) version of

FPPRF.

FIMAIN.FOR      TRANSP/FPP interface driver (former routines NBMAIN

FPMAIN and FPICHMN have been combined)

TRTOFP.FOR Transfers TRANSP information to FPP inputs.

FPTOTR.FOR Transfers FPP output to the TRANSP common block.

FPPORT.OLY  Olympus style definitions of FPP specific common block

in TRANSP's PORT.FOR and therefore TRCOM.

FPPORT.CMN A fortran version of the FPPORT.FOR which can be used in

the standalone version (without TRANSP) of FPP.

FPPCOM.CMN Logical name FPPCOM points to this file, which includes

most of FPP's own (separate from TRANSP) common blocks.

*.cmn There are a few other common blocks which have to be

included separately from FPPCOM.CMN.  In particular, 

GNEUT.FOR can't use FPPCOM.CMN because of a name  

conflict with the FRANTIC common block, and so must

use its own copy of GNEUT1.CMN.  There are also a 

few common blocks which are not included via *.cmn 

files but are already in the *.for files.

*.for all of these contain a single subroutines except for

RATES.FOR which contains a set of replacement cross-section routines



used to make FRANTIC work for helium plasmas as well as

hydrogen plasmas, and

FPPONLY.FOR which contains some routines for the standalone version

of FPP only (and so are not used in the TRANSP version.)

****************

VIII. References

****************

There are extensive comments in the source code.  Also, the *.inf files

contain comments about various modifications to the code. 

References which describe how the code works, what numerical techniques

are used, derivations and definitions of the collision and quasilinear

operators can be found in: 

Hammett86:  Gregory Wayne Hammett, "Fast Ion Studies of Ion Cyclotron

Heating in the PLT Tokamak", Ph.D. Dissertation (Princeton, 1986),

University Microfilms International No. GAX86-12694.

Stix92: Stix documented my approach to bounce-averaging the quasilinear

operator in Chapter 18 of the 1992 edition of his book: T.H. Stix, Waves in

Plasmas, (American Institute of Physics, New York, 1992).

Smithe87:  D.N. Smithe, P.L. Colestock, R.J. Kashuba, T. Kammash, "An

Algorithm for the calculation of three-dimensional ICRF fields in

tokamak geometry," Nuclear Fusion, Vol. 27 (1987) p. 1319.

Smithe89:  D.N. Smithe, C.K. Phillips, G.W. Hammett, P.L. Colestock,



"SNARF analysis of ICRF heating on TFTR", in the proceedings of the

Eighth Topical Conference on Radio-Frequency Power in Plasmas, (Irvine,

CA, 1989), Roger McWilliams, editor, (AIP Conference Proceedings 190).

See also the papers by G.W. Hammett, C.K. Phillips, and P.L. Colestock

in this conference for examples of how FPP and SPRUCE are used.

A recent example of the use of the code to investigate radial transport

of fast ions can be found in W.W. Heidbrink et.al., "The Diffusion of

Fast Ions Following Short Neutral Beam Pulses in Ohmic TFTR Discharges",

submitted to Phys. Rev. Letters.

To get an understanding of the physics underlying ICRF heating and

quasilinear theory which FPP is trying to model, one should read the

classic work by Stix (much of which now appears in Chapter 18 of the 1992

edition of his book cited above):

Stix75:  T.H. Stix, "Fast Wave Heating of a Two-Component Plasma," Nucl.

Fusion V. 15 (1975) p. 737.

There are a few additional references which might not be found in my

dissertation, but which might be useful: 

Rob Goldston's Ph.D. thesis (Princeton, 1977) contains a lot of the

foundation.  Some of Goldston's thesis was published in R.J. Goldston,

Nucl. Fusion 15, p. 651 (1975), but the actual 2D-velocity bounce-averaged

finite-difference Fokker-Planck code wasn't written until after the thesis

and this paper.

J.G. Cordey, NF 16 p.499 (1976) describes the basic bounce-averaging

approach. 



FPP was built on an earlier code by Rob Goldston which is described in J.D.

Strachan, P.L. Colestock, S.L. Davis, et. al. Nucl. Fus. 21, p.67 (1981),

and D.K.  Bhadra, et. al. Nucl. Fus. 22, p. 763 (1982).  Though somewhat

cursory, these two papers are apparently the best published descriptions of

Goldston's early version of the code.  Much of the code used for neutral

beam injection still has the same conceptual structure as Goldston's

original code, though I have made extensive improvements virtually

rewriting most of the code.

FPPRF uses a conservative differencing scheme which is described in

McCoy, Mirin, and Killeen, CPC 24 p.37 (1981).  That the RF operator

should be written in conservative form was first made clear upon reading

Kerbel and McCoy's "Bounce-Averaged ICRH for Toroidal Devices", 1983

Sherwood meeting.


