from /common/transp_shared/Code/transp/JET_62/codesys/source/fppmod/sccf.for

subroutine SCCF(ifasti)

mod dmc August, 1995 at JET -- up-down asymmetric geometry support
see note, below.

dmc March 2002 -- btime vs. theta distribution calculated.
this allows proper un-bounce-averaging of distribution e.g. for later
fast ion - fast ion fusion rate calculations

dmc April 2002 -- sccf involves does not depend on fast ion species;
so, pass a fast ion specie counter; if .gt.1 do not recalculate; just
restore answer from prior loop iteration. (ifasti).

This subroutine calculates a number of different bounce-averaging
integrals, using the zero-banana-width approximation, for each
different pitch angle. The integrals which are calculated are
listed below:

btime (Integral dl/abs(v_parrallel))/(2 pi g Rmaj/v) normed bounce time
vp2av <vpar**2/v**2> to get beam perp and par betas
bratio <Bmin/B>-1 needed for pitch angle scattering operator

vparav <Vpar/v>

rvparav <R Vpar/Vv>

rmaj2av <R**2>

vparvr <Vpar/V/R>

driav <1/dr> (bounce averaged gradient operator -- for diffusion)

vprec toroidal transit frequency (sec**-1) for trapped and passing ions
(added by Rob Goldston, 1/29/83)
(nb dmc Apr 2002 -- this is not used elsewhere in fppmod)

dvolnorm = (2 pi q Rmaj / Bmin Integral dl/B)

Additional quantities calculated by this subroutine:
njtrap

Most of the specifics about the plasma geometry come into the problem
through the bounce-averages. For general axisymmetric toroidal geometry,
the bounce time can be written as:

Tau_bounce = Integral dl/abs(v_par)
= Integral d(theta) J B / abs(v_par)

With the proper choice of the poloidal angle theta, the jacobian

J can be written as J=(q R**2 / It), where It= (R B_tor) is a flux
surface quantity, and q is the inverse rotational transform and is
also a flux surface quantity.

However, FPP and TRANSP do not use this choice of poloidal angle,
so the Jacobian must be explictly evaluated. This is done in
MOMRY and FPGEO.

--Tau bounce is defined by gwh for circulating particles as
the time to make one complete orbit to return to the
same poloidal angle, and for trapped particles it is
the time it takes to make one half orbit from one banana
tip to the other. For vpar>>vperp, the passing particle
bounce time reduces to (2 pi g Rmaj)/vpar.

--SCCF calculates BTIME,which is related to the bounce time by:
tau bounce = (2 pi g Rmaj / v) * btime
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--while I am on the subject, I might as well define other
normalizations. f_fpp used in this code has the units

of particles per (cm)**3 (eV)**1.5, and is related

to the velocity space distribution function f by

f_fpp = (2**.5 2 pi / 25) (erg / (m eV))**1.5 f

where m is the particle mass in grams.

f has units of particles per (cm)**3 (cm/sec)**3, and is
normalized such that the local particle density is given
by (in TeX notation):

n = \int dA3 v f

--so0 the average number of particles on a flux surface is:
<n> = 25 dVolnorm (sum over xsi of) (sum over energy of)
dxsi dE sqrt(E) abs(xsi) btime f_fpp

where dvVolnorm = (2 pi q Rmaj / Bmin Integral dl/B)

large aspect ratio concentric circular flux surface definitions:

VPREC == <[VPAR**2/V**2 + VPER**2/(2*V**2)]
* [Q*CTH/rOverR + STH*(TH-PI)*r*dq/dr/rOverR]> (UNTRAPPED PTCLS)
* [Q*CTH/rOverR + STH*TH*r*dq/dr/rOverR]> (TRAPPED PTCLS)

Note that the definition of the precession speed for untrapped
particles is probably not well defined. Because of the shear in

the magnetic field (dg/dr), the measure of the precession of a particle
relative to a field 1line depends on which flux surface you choose the
reference field line from. It may depend on the type of mode you

are interacting with, i.e., ballooning modes are localized to the
large R side of the plasma, while kink modes are more constant,

and barely passing ions spend most of their time on the small R side
of the plasma. The choice made here (TH-PI) is perhaps best for
strongly passing particles and ballooning-type modes, while Rob's
original choice (PI-TH) is perhaps best for looking at barely

passing particles and flute modes (like the m=1 kink usually

driving the fishbone instability).

dmc at JET: Aug 1995

in the presence of up-down asymmetric plasma geometry, the
following assumptions (in the old code) were not correct:
(a) Bmin is at theta=0 & Bmax is at theta=pi
(b) orbits are updown symmetric.

so, call check symflag to determine if the
geometry is asymmetric; if it is,integrate from theta(Bmin)
to theta(Bmax) in both the up and down directions, adding the
results, instead of just going one way round and doubling the
results, and, don't assume theta(Bmin)=0.0.

subroutine fpgeoinv is also modified -- calling arguments
changed. 1Its called only from sccf.
dmc -- d. mccune -- dmccune@pppl.gov



