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Abstract

The NUBEAM module is a comprehensive computational model for Neutral Beam Injection (NBI) in tokamaks. It is
used to compute power deposition, driven current, momentum transfer, fueling, and other profiles in tokamak plasmas due
to NBl. NUBEAM computes the time-dependent deposition aovislg down of the fast ions produced by NBI, taking into
consideration beam geometry and composition, ion-neutrakictiens (atomic physics), anomalous diffusion of fast ions, the
effects of large scale indtdities, the efect of magnetic ripple, and finite Larmeadius effects. Tea NUBEAM module can
also treat fusion product ions that contribute to alpha heating and ash accumulation, whether or not NBI is present. These
physical phenomena are important in simulations of present day tokamaks and projections to future devices such as ITER. The
NUBEAM module was extracted from the TRANSP integrated modeling code, using standards of the National Transport Code
Collaboration (NTCC), and was sulitted to the NTCC module libraryhftp://w3.pppl.gov/NTCQE This paper describes the
physical processes computed in the NUBEAM module, together with a summary of the numerical techniques that are used. The
structure of the NUBEAM module is described, including its dependence on other NTCC library modules. Finally, a description
of the procedure for setting up input data for the NE/BV module and making use the output isoutlined.
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1. Introduction

The National Transport Code Collaboration (NTCC) project [1,2] is developing a new approach to tokamak
and stellarator transport codes. This approach facifitabele use by non-experts and eases the implementation of
large multi-physics integrated models. A modular appradidws the development of plug-in modules for physics
and numerical packages, to haveestable applications, and to access expental data from local files or over
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the Internet through a uniform interface, while still rexgslegacy Fortran code internally. The NTCC project
established module library standards in order to prensbaring and community ownership of modules required

for predictive integrated modeling. An essential element of predictive integrated modeling involves a description
of the heating mechanisms that input energy into the plasma.

Neutral beam injection (NBI) heating, ohmic heating and heating by high-frequency waves are the major
heating methods used in the modern magnetic fusion experiments. NBI is the major heating mechanism at the
Joint European Torus (JET), the largest tokamak device in the world, as well as at many other important tokamak
fusion experiments.

The basic concept of NBI heating is straightforwardetited energetic neutral particles (usually isotopes
of Hydrogen or Helium) are captured in the target plasma by atomic physics processes—charge exchange and
ionization. This leads to the creation of an energeticpopulation, which is confined in the tokamak’s magnetic
field and subsequently transfets energy to the bulk target plasma through Coulomb collisions [3-5].

Neutral beams are created by passing an ion beam througiti@hzer chamber; thesulting neutral atoms are
injected across the strong confining magnetic field into the target plasma. Conventional positive ion-based neutral
beams have particles whose energies are limited by the fall-off of charge exchange neutralizer chamber efficiency
to about 100 KeV. Negative ion-based neutral beams, which use an electron stripping neutralizer, can create neutral
beams of significantly higher energy, as high as several. Me&ither case, the injected neutral atoms are deposited
as ions in the target plasma through impact ionizations and charge exchange processes. A large fraction of the
resulting fast ions become trapped in the confinement region while the remainder leave the plasma region and hit
the wall or the limiter. Depending on beam geometry and point of capture, the deposited fast ions carry a greater or
lesser portion of their velocity parallel or anti-parallel to the magnetic field. Those particles with sufficient velocity
along the magnetic field lines follow “passing orbits” and travel roughly parallel to the magnetic field lines. lons
with insufficient parallel velocity are mirror-trapgén the tokamak’s nonuniform magnetic field and their orbits
follow a characteristic banana shaptegjectory. All confined fast ions transfer their energy and momentum to
thermal electrons and ions through collisions and, ew@lytuthey become thermalized. A schematic view of the
NBI system based on the negative ion source for the JT-60U tokamak is given in Fig. 1 [6]. The calculation of the
complete dynamics of NBI heating requires a comprehensive computer code.

The TRANSP code [7-10] is a Princet®tasma Physics Laboratory (PPPtgrisport code that has continued
to develop and advance since the early 1970s. TRANSP is one of the primary codes used in the fusion community
for time dependent analysis of tokamak experimenttd.dan essential element in the TRANSP code is the Monte
Carlo package for NBI physics. The NBI treatment inclsitiee physics of neutral beam deposition, fast ion two-
dimensional orbiting, power deposition, beam driverrent and momentum transfer. The NBI treatment accounts
for particle collisions, charge exchange loss and recapture, and transport of beam particles. The treatment of neutral
beam injection in the TRANSP code has been tested using experimental data from numerous tokamaks and is
widely acknowledged to be very accurate [10,11]. Faareple, Fig. 2 shows the match between measurement
and TRANSP simulation for collimated profile measurements of Deuterium—Tritium neutron emission in the JET
tokamak. However, the NBI coding, which was originally written in Fortran-77, was developed as an integral part
of the TRANSP code and could not be transferred easily for use by other modeling codes.

In order to make the TRANSP NBI package available to the wider fusion community, the NTCC module library
standards were employed in extracting the NBI coding from the TRANSP code. The NTCC standards reflect
general tendencies in modern congtidnal physics that are focused partability issues. The new NBI module
that has been developed, called NUBEAM, has been submitted to the NTCC module library.

The original TRANSP Monte Carlo fastion code was coupled to the rest of the TRANSP code through enormous
shared Fortran “common” blocks, as is typical for older Fortran codes. This is an inherently non-modular and error-
prone communications method, but early versions of Fortran offered few practical alternatives.

Static analysis of the TRANSP code before extraction revealed that there were a total number of more than
6000 TRANSP common block scalar and array variables, and 1117 of these variables were used by the NUBEAM
package. Approximately 370 variables were input, 365 were output, and 55 variables were both input and output.
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Fig. 1. Schematic view of the NBI system for the JT-60U tokamak described in Ref. [6].
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Fig. 2. Measurement and TRANSP simulation of collimated profile aftBéum—Tritium neutron emission on JET discharge 42982 Ref. [11].

The remaining 327 variables were found to be internal to NUBEAM and not needed by the rest of the TRANSP
code. The number of Fortran subroutines in NUBEAM was more than 250. The physical meaning of all the external
variables has been analyzed and eamfiable has been assigned to one of a number of Fortran-90 compound data

structures. The NUBEAM code’s internal communications were rebuilt around a set of Fortran-90 modules, with
all external communications handled through the ergezof instances of compound data types. A Python script
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code generator was developed to help with the devetoypraf the interface, greatly simplifying the procedure
for making modifications. NUBEAM’s internal spatial grid was made independent of that of the main TRANSP
code, and the XPLASMA NTCC module was invoked tantlee the resulting interpolimns needed for passing
profile information between the disparate grids. Finabkyeenal dependencies that existed in the original TRANSP
implementation of NUBEAM were eittr included in the NUBEAM module or régced with modules available in

the NTCC module library. The structure of thesuiting NUBEAM module is described in this paper.

This paper is organized in the following manner. In Section 2, the underlying physics used in the NUBEAM
module is described. In particular, beam deposition anddasirbiting are emphasized. In Section 3, the procedure
for initializing the NUBEAM module is described and semecessary information is included about other NTCC
modules that are used in the NUBEAM module. Section 4 contains a description of the NUBEAM module output.
Conclusions are presented in Section 5.

The NUBEAM source code and associated modules are available for download at the NTCC modules library
website http://w3.pppl.gov/INTCC

2. NUBEAM module underlying physics

The NUBEAM module contains a Monte Carlo package for time dependent modeling of fast ion species in an
axisymmetric tokamak. This Monte Carlo package represents the fast ion slowing down distribution function as a
discreet set oV weighted model ions selected lgndom processes using probies dictated by the underlying
physics. An advantage of the Monte Carlo method is that the representation of “smoothly varying” complex physics
is relatively straight-forward. A disadvantage lies in the computational cost of reducing the statistical variance or
“noise” in the model results. Generallj{2 model ions need to be followed in order to reduce the statistical
variance by a factor oN. Such cost considerations make it impractical to model the entire thermal continuum
by such methods. Consequently, the NUBEAM module uses the Monte Carlo method for the fast ions only. The
NUBEAM module stops following ions that slow down bel@®/2)T;, whereT; is the temperature of the thermal
ions. These ions are then considered as “thermalizatS and are described in terms of a thermalization source
function provided as an output of the NUBEAM module.

The NUBEAM module takes into accoumultiple beamlinesall beamline geometrgg and beam composition
by isotope and energy fraction. Neaitbeam stopping atomic physics, incladicollisions with partially slowed
down fast ion species, are taken into account, with an option for a neutral beam excitation correction. After
deposition of fast ions in the plasma, the modeling of the slowing down includes anomalous diffusion of fast
ions, the effects of large scale instabilities, the effects of magnetic ripple, and the effects of finite Larmor radius.
The modeling also includes charge exchange lossecabture of slowing down fast ions. The NUBEAM module
computes the trajectories of neutral atoms and fasoidits. The module accounts for multiple fast ion species
that can be present, either due to beam injection of energetic neutral particles or as a result of the product of nuclear
fusion reactions. The 2-D beam—beam, beam—target,tarcthbnuclear reaction rate profiles are computed. The
basic elements are described in this section. A complete listing of the elements of the NUBEAM physics is given
in Appendix A.

The original NUBEAM library, developed for the TRANSP code, is described in Ref. [12]. While the basic
ideas and methods used in the module remain the same, many new elements have been added and existing ele-
ments improved during the past two decades. The major new and improved elements of the NUBEAM code are
described below:

(1) Angular momentum balance and the effects of target plasma rotafi@noidal rotation of the thermal target
plasma can effect the plasma frame energy of newlycitgjd beam particles, thus affecting their deposition,
slowing down, and beam—target fusion rates. Angular momentum transport is also an important plasma physics
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research topic; the coupling of the NUBEAM model’s angular momentum source terms to angular momentum
transport equations is described in detail in Ref. [13].

(2) Generalized, time varying axisymmetric numerical MHD equilibrium and fielflowing down beam ions
carried from a prior NUBEAM timestep re-enter orbiting in a changed plasma field configuration. The ion
guiding center positions are reconstructed on the same toroidal flux surface as close as possible to the
guiding center’s final[R, Z] position in the prior NUBEAM timestep. Then, the guiding center’s velocity
vector is reconstituted by asserting conservation of magnetic mom%y\B, and canonical momentum,

Py = —mpRvy — qp¥/c, Wwherem; andg;, is the mass and charge of particle spediesndy is the poloidal
flux. This leads to adjustments of the ion’s kinetic energy and momentum, usually small, which mimic the
effects of adiabatic magnetic (de)compression.

(3) Finite Larmor radiug(FLR) corrections—Deposition, charge-exchange, and recapture involve FLR steps from
an actual particle position to a guiding center, and backraghlso, for each evaluation of the atomic physics
and collision operators on slowing down ions, aslaslbeam—target fusion e, a random gyrophase angle
is taken to determine the direction of the Larmosplacement from the ion giing center to the point of
interaction with the target thermal plasma.

(4) Fusion product species, with simultanes treatment of multiple fast specieSelf-consistent treatment of the
fusion product ions allows for the simulation of alpha particle effects, which can be potentially important for
‘next-step’ tokamaks, such as ITER. The resulting éggha particle profiles from the NUBEAM module were
recently used as input to codes that calculate thectsfof the toroidal Alfvéreigenmode instability, MHD
stability and micro-turbulence [14].

(5) Anomalous diffusion, sawtooth mixing, and toroidal field ripple transport med&tse modeling of these
physical phenomena have also been improved.

Particular features of the physics included in the NUBEAM module, with the emphasis on aspects not described
elsewhere, and in particular not described in refiee [12], are summarized in the subsections below.

2.1. Beamline geometry

All of the parts of a neutral beam injector that aredted outside of the tokamak (or magnetically confined
plasma device) vacuum vessel are referred to as a “ndagtamhline”. A neutral beamline consists of the following
parts: a plasma discharge that provides a source of sasries of electrically chged grids that accelerate the
ions and focus them into a beam; a large neutraliratttamber designed to convert as much of the ion beam as
possible into a neutral beam; strong magnets and a beam dump to remove any fast ions that remain in the beam;
and finally, valves and a flange for attaching tleaim line to the vacuum vessel. In the NUBEAM module, each
beamline is represented by a probability weighted randahbsen collection of newdt tracks characterized by
parameters that are input to the NUBEAM module. These input parameters include the tangency radius of the beam
center line relative to the axis of symmetry of the tok&pthe height and angle of the beam center line relative to
the midplane of the tokamak; the size and shape of the ion source grid, the height and width of the aperture; and
the vertical and horizontal divergence and focal length of the beam. These parameters constitute an “engineering
description” which must be provide@garately for each beamline on a tok&meaperiment. These parameters are
important and should be accurately specified.

The formation of each beam starts witle extraction of a beam from the ion source [15]. Most of the neutral
beam injection systems use positive ion sources. Since the cross-section for charge exchange of positive hydrogenic
ions is small for energies larger than 100 keV/amu, the energy of the ion is limited by the neutralization efficiency.
The energy of beam species can be increased to more than 1000 keV/amu by using negative ion sources. The ions
extracted from the plasma source consist of atomic ions mixed together with diatomic and triatomic molecular
ions. After these ions are accelerated to the uniform (&rBrgy, each nucleus in each diatomic molecular ion has
half of the full energy and each nucleus in each triatomataoular ion has one third of the full energy. The input
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parameters for each beamlet in the NUBEAM module inclidemagnitude of the full energy of the beam ions,
the fractions of current (i.e., the number of ions perosel) in the full, half, and third energy components of the
beamlet, and the power injected through the vacuum wall of the tokamak as a function of time.

The other components of the NUBEAM module are used to compute the physical processes that occur as the fast
neutrals pass through and interact with the magneticalhficed plasma. These physical processes are described
in the next four sections.

2.2. Beam deposition

Techniques, such as the Monte Carlo method [16] or the pencil-beamlet method [17,18], have been developed
for the calculation of beam depositiongfiles within the magnetically confined plasma. The NUBEAM module
uses the Monte Carlo method. While the pencil beamlet method is computationally faster, the Monte Carlo
method provides a more detailed treatment of the physics. “Monte Carlo” particles that represent ensembles
of physical particles with similar velocities are intramid [12]. The number of physical particles represented
by each model particle is denoted by its “weight”. EXpace using the module within TRANSP has shown
that NUBEAM will calculate reasonably well behavedrii@e and energy source profiles if a statistical
ensemble of a few thousand weighted Monte Carlo particles per fast ion species is maintained throughout the
simulation.

The process of maintaining a fixed number of Monte Carlo particles per fast ion species is known in NUBEAM
as “constant census”, which works as follows. The physical quanti¥igs,the physical number of newly injected
particles during timeste, ¢ + At], andNg4, the physical number of unthermalized ions circulating in the plasma
at timet, are defined from the beam input data and the results of the simulation up to the current time:

t+At
Ninj = / [15(Eo,©) 4 Ip(Eo/2.7) + Iy(Eo/3.,7)]df  and Noig= / np(p,1)dv, 1)
t 14

whereAt is the timestep/, (E, ) is the input neutral beam current (particles per second) as a function of energy
E and timer, andEy is the full energy of a particle in the beam. The numerical contyg@l;, the “constant census”
number of Monte Carlo particles to maintain per fast ion species (control input to NUBEAM), is provided by the
user. Then, the following target Monte Carlo census numbers are defined:

NiotNinj

N = wotVing 2
""" Ninj + Nold @
and
* -/\[totNoId (3)
old Ninj + Noid’

the number of new Monte Carlo particles to inject, and the number of old Monte Carlo particles to retain,
respectively. Due to time variation of input power atheé time variability of losgprocesses, the quantityoiq,

the actual number of unthermalized Monte Carlo ions stored from the previous timestep, will not precisely match
N4 Therefore, the quantity

Nadjust= Néd - Nold (4)

is computed, representing the necessary adjustment to the Monte Carlo ensemble representing the old ions. If
| Vadjust €Xceeds a certain thresho}ti’ipj/S), then, Russian Roulette or Splitting are used to subtract aNagst
particles to the Monte Carlo ensemble representing the surviving population, with adjustment of weighiVg@ that

is conserved, and th i”r‘]j new particles are deposited. If the threshold is not exceeded, the surviving population
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is not adjusted, and/inj = Nt — Noid New particles are deposited. In either case, the number of particles after
deposition is the constant cens\g:.

The only time that the Monte Carlo “constant census” is not maintained, is when the new particle source goes
to zero—for example, after the shut-dowf neutral beam heating late in a discge. During this end phase of the
simulation, the Monte Carlo population is allowed to decline at the natural rate dictated by thermalization and/or
other loss processes, untifyg reaches zero, signaling the end of the simulation.

New beam ions are injected into the simulation with energies assigned by a random process consistent with
the measured beam voltage and full, half, and one-third energy fractions. If multiple beams are present, their
representation in the Monte Carlo deposition procegzroportional to the measured total power on each beam
line.

In NUBEAM, Njot for beam ions is denoted apt cl s; Nt for fusion product ions is denoted apt cl f ;
these are set by user input. The amount of computer time used by NUBEAM is very nearly proportional to the
number of Monte Carlo model ions;o; used. Normally, NUBEAM assigns equal weight to each newly deposited
Monte Carlo particle in each timestep. However, situations can arise where it is desirable to modify this behavior.
For example, in simulations with high beam ion density fractigpn., a Monte Carlo fluctuation in the central
density might cause the unphysical resylfn, > 1. Since the central radial zones represent smaller targets for
Monte Carlo orbit trajectories, it could be desirable to increase the number of Monte Carlo particles representing
np in the core region, at the expense of the number of particles representing the fast ions in the edge region,
without modifying the constant censid§ot. The NUBEAM controlwght a allows this adjustment to be made. If
wght a=1 (the default) is set, there is no radial adjustment of weight. As the valuglof a is increased (to a
maximum ofn-zones, the user-selected number of radial bins in the Monte Carlo model), an ever larger number
of Monte Carlo particles each of reduced weight areduserepresent the population in the central region, while
corresponding fewer particles of increased weight are used for the edge region. Statistical variance in model results
are accordingly reduced (increasedpending on their relatevdependence of model poptitas in the core (edge)
regions. The effects ofght a adjustment on a test case, which is based on a DIII-D discharge at 1.95 seconds,
is shown in Table 1. The table shows the average values and root-mean-square (rms) variations of number of
physical,N and Monte Carla)V fast ions with orbit averaged flux radial coordinatein the intervalg0, 0.1] and
[0.75, 1], the central Deuterium beam ion dgty, and the beam electron heating, integrated over the edge region
0.75<p< 1.

Evaluation of the beam deposition takes into accountxpee&ted full range of atomic processes affecting beam
stopping in a hot target plasma. For a beam neutral that has atomic ndmbenergyEo, and velocityvg, the

Table 1
The effects ofaght a adjustment
wght a=1 wght a=20
average value rms deviation average value rms deviation
Nlp<oa 111 9% 251 5%
Nls<o1 13 x 108 9% 14 x 1018 6%
Nlp>075 180 9% 93 11%
Nlp>075 2.2 % 10'8 8% 23 x 108 11%
np(0) (cm3) 6.4 x 1012 5% 65 x 1012 4%
Jvs>075) Pre()dV (W) 1.9 x 10P 5% 19 x 10° 8%

Data based on run to equilibrium against a fixed target plagg@)= 6.5 x 1013 cm3, 7;(0) = 8 keV, T, (0) = 4 keV, total injected power

is 9.2 MW, full energy of injected Deutemo neutral beam atoms is 80 keV). 4000 Monte I€aons were used; the vast majority have
0.1 < p < 0.75. After the beam ion distribution equilibrated, the run wasested for 15 0.01 second timesteps. The table values show the
average value and rms variation of the indicated quantities from these 15 timesteps. The qudraitiéd/ are measured in each NUBEAM
timestep after deposition, but before orbiting. The physical quantijé8) and thePy, integrated in the edge region are the results of sums of
all particle orbit trajectories through the iedied regions over the duration of the timestep.
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expectation value of the flight time is

-1
T = [an (Ujvrel):| . 5)
J

The summation is performed over all thiebeam stopping reactions;; is the density of the charged particle
population driving the reactions; is the cross-section of the reactiong = |v; — vol; o is the beam neutral
particle velocity;v; is the charged particle velocity; and

fgi dﬁi Oj (Urel)vrelf(ﬁi)
5, dvi f (@)
yields the appropriate target species disttitnuaveraged reaction rate coefficient for thh stopping reaction.
The stopping reactionsdétuded in the model are:

(6)

(ojvrel) >=

(1) electron impct ionization,

(2) thermal ion charge-exchange,

(3) thermal ion impact ionization,

(4) high-Z thermal ion stopping (impact ia@tion and non-neutralizing charge exchange),
(5) charge exchange with slowing down fast ions,

(6) impact ionization on slowing down fast ions.

Electron impact ionization is approximated using the Maxwellian averaged rate coefficients from standard tables
(p. 27 in Ref. [19]), using the adjusted electron temperature

T =T + 2/3(me/mp)(Eo/ Ao). (7

The required electron impact ionization data tables are supplied by the NTCC PREACT module.

For the thermal ion interactions (Hydrogen—Hydrogdndrogen—Helium, and Helium—Helium), ground-state
charge exchange cross-sections are used from tidLORd book” [20]. The beam—target Maxwellian averages
are pretabulated on a grid to represent the two-dimensional funcvgng)(Eo/Ao, T;j/A ;) by fast piecewise
bilinear interpolation, again using the NTCC PREACT module. HEy@ndA ; are the target species temperature
and atomic number, respectively, and the neutral en€gig taken in the reference frame of the flowing thermal
plasma, for which NUBEAM allows a toroidal angular velocity to be specified.

For the impurities, approximate expressions §@furel) are taken for Carbon and Oxygen from the standard
ORNL “red book” [21], and a Z-scaling is applied for other impurity species; this data is also available in the
NTCC PREACT module. The impurity stopping data has known deficiencies [22], and a collaboration with the
Oak Ridge atomic data center is under way to upgrade the available cross sections, which will be reflected in a
future version of PREACT.

For the interactions with slowing down fast ion species, an explicit Monte Carlo integiaj@é) is calculated
during Monte Carlo orbiting, and is retained fromet preceding timestep of the NUBEAM calculation for
subsequent use by the deposition model. The deposition model is used to compute the representative average
velocity vectorig in each zone on a two-dimensional spatialdgrseparately for théngoing and outgoing
trajectories of each energy component of each beamliaeh Euch portion of the injected beam neutral population
is treated as mono-energetic, for which a sepafafer.;) Monte Carlo sum is evaluated. These sums yield the
appropriate averaged rate coefficients for “beam—beam” stopping by charge exchange and impact ionization, which
are important terms affecting deposition in many beam heated tokamak experiments at lower densities, where the
beam ion density is 10% or more of the electron density.

The average flight timeg for a beam neutral is a function of the neutral’s position in the target plasma. For
reasons of efficiency, all rate coefficients for thermlalsma and beam—beam stopping reactions are pretabulated
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for all neutral energies at each plaszane. The NUBEAM’s Fortran-90 modulapat om _nod, collects these
one-dimensional lookup tables, which are faster to use than the two-dimensional tables provided directly by the
general purpose atomic physics NTCC PREACT module.

For any given beam neutral trajectory with veloaity the probability of “iine-through” loss is

di
Pshine= eXp(—f T/ﬂvo>’ (8)

L

where the integration is performed over the entire beam gathhile the probability of the neutral surviving to
distancel along its flight path is

L
di
P(L) =exp<—/ T/ﬂvo) 9)

0

In order to generate the initial condition for a Monte Cadp from a sample beam neutral trajectory, a random
choice of the deposition point is taken from a perturbed probability distribution, which incorporates a statistical
adjustment variableyght a, allowing the model to generate, if desired, a greater number of Monte Carlo ions of
reduced weight for improved statistics in the core region at the expense of the edge.

It should be noted that the atomic physics data provided by the NTCC PREACT module supports only a ground
state model for deposition. In high density target plasmas, multi-step ionization can be significant. Multi-step
ionization occurs when an initial collision puts the neutral beam atom’s electron into an excited state, and a
subsequent collision completely remes the electron before it has a chance to decay back to the ground state.
NUBEAM supports an excited states correction [19].

The beam neutrals that are involved in ionization and charge exchange collisions determine the particle source
rates of ions, electrons and thermal neutral atoms, and they contribute to charge exchange loss rates for thermal
ions. These source/sink profiles aaecumulated both as flux surface averages and as poloidally resolved 2-D
profiles, available as code output, which can be used as input for transport equations and which can provide data
for a thermal neutral gas transport model.

In the case of deposition of fusion product ions, beaeaH and beam—target fusion rates from the previous
timestep are added to thermonuclear rates from the current timestep, to determine the spatial distribution of the fast
ion source. In a simplification of the physics, the rest frarhall fusion reactions is assumed to be coincident with
the rotating thermal plasma reference frame, so thafusien product ion source is isotropic and mono-energetic
in the plasma frame (e.g., 3.5 MeV for DT alphas). As with neutral beam deposition, a “constant census” algorithm
is used: a population afpt cl f Monte Carlo model ions of roughly equakight is maintained for each fusion
product species. Splittghor Russian Roulette are used as necessary so that the number of newly deposited Monte
Carlo model ions relative to the number continuing from earlier timesteps will match the physical ratio of new
fusion product ions deposited relative to the total number of slowing down fusion product ionsgfita profile
statistics control for beam ions is not available for fusion productions.

2.3. Fastion orbits

The Monte Carlo initial conditions fagach orbiting ion follow from a finite Lianor radius step that is displaced
from the ion’s deposition point. The orbits of beam ions are advanced by solving the guiding center drift orbit
equations using standard techniques [23]. For reasons of numerical performance and convenience, the method was
generalized to allow the use of magnetic coordinates, in which the calling code provides the plasma geometry and
fields; a numerical Jacobiayy,, is generated, rather than requiring a coordinate system in whiistproportional
to 1/ B2. The drift orbit equations are also generalized to ipovate a radial electrostatic field, which is generally
present in the case of toroidally rotating plasmas.
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The effects of drag, energy diffusion, and pitch angle scattering are taken into account using alternating time
steps in the drift equations with a “collision operator” based on Fokker-Plank coefficients that characterize the
relevant rates [12,24]. A toroidal electric field imparts a modest acceleration to the orbiting ions.

The collision operator is evaluated in the frame of reference of the toroidally rotating plasma. Strong toroidal
rotation can significantly affect the plasma frame deposition energy of beam particles, affecting their slowing
down times and the splitting of beam heating between thermal ions and electrons. Heating profiles, torques, and
thermalization sources (particles, momentum, energyWell as beam—target fusion rates are also evaluated in
the collision operator. The beam—target fusion rédtese) are taken from the Maxwellian averaged beam-target
rate tables in the NTCC PREACT module, based on standard fusion cross-sections [25]. The use of lookup tables
of Maxwellian averaged beam—target fusion rate coefficients reflects the same method applied in the treatment of
beam-target atomic physidor neutral beam deposition.

During orbiting, Monte Carlo sums are also used to calculate the fast ion density, average toroidal angular
velocity, and average energy densities parallel to and perpendicular to the magnetic field, for each fast ion species.
In fact, an entire 4-dimensional phase space fast ion distribytidh v /v, p, 0) is calculated by Monte Carlo
summation. This fast ion distribution function uses a spafab) grid, described further in Section 3.2. The
spatial grid, representing magnetic coordinates, has an evenly space@ getnef “rows”, with a variable number
of 6 zones per row: fewe# zones near the axis, more toward the edge. Typically, 10 or 20 zone rows are used;
enoughd zones are used to give similar spatial resolution in both the radial and the poloidal directions. For the
energy grid, the default numbers for pitch ang|¢v and energyE grid zones are 50 and 100 correspondingly. For
beam ions, the maximum energy for the energy grid isctell to be larger than beam injection energies in order
to allow energy diffusion and is typically in the ran§20-160 keV. For fusion products, the maximum energy is
set as follows:

— fusion Tritons: 1.25 MeV
— fusion He3: 1.00 MeV
— fusion Alphas: 5.00 MeV

which are safely above the birth energies for common plasma fusion reactions. The spatially two-dimensional
distribution functionf (E, v /v, p, ) is used to compute the fusion reaction rate between fast ions and is also
retained for simulations of diagnostics based on choedjiratls, such as charge exchange flux spectra. The number

of Monte Carlo particles necessary to produce reasonaliptnfast ion densities and heating profiles, is generally

not sufficient to produce a locally well-behaved Monte Catlmmed fast ion distribution function. Since reduction

in statistical variance scales only as the square root of the number of Monte Carlo particles (and hence computer
time) used, it is expensive to reduce the local variance. Nevertheless, chordal and volume convolutions over noisy
Monte Carlo distribution functions have been shown to work well.

The accumulation of Monte Carlo fast ion distribution functions during orbiting allows NUBEAM to perform
the retrospective evaluation of the fusion reaction between fast ions, by convolving the distribution functions in a
Monte Carlo integral. Based on the standard fusion cross-sections [25], the NTCC PREACT module provides the
necessary gyro-averaged fusion rate coefficiéntsq) for this calculation.

During the slowing down of fast ions, an atomic physics operator is evaluated to model fast ion charge exchange
losses. The atomic physics operator is also used to compute fast-ion beam stopping coefficients for the next
deposition timestep, as well as profiles of charge exchange and impact ionization rate coefficients for thermal
energy background neutrals. The latter profiles are inapbtbecause they play a dominant role in core thermal
neutral gas transport.

Direct integration of the ion drift equation contributes substantially to the computational burden in the
NUBEAM module because the characteristic times of the if@s orbiting and of ion thermalization are very
different (the ion orbit bounce time is usually many aslef magnitude shorter than the ion slowing down time).
Consequently, a number of acceleration techniques &einghe NUBEAM module. In particular, the numerical
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control variablesf ppcon andcxpcon, are introduced. The first variableppcon, indicates the number of
collision operator evaluations to perfornrgebit half-bounce. The second variabtepcon, indicates the number

of atomic physics evaluations per orbit half-bounceribg the evaluation of the collision and atomic physics
operators, characteristic slowing down, pitch angle scattering, energy diffusion and charge exchange loss times are
estimated, based on an average over each orbit half-bolineeatio of the shortest of these characteristic physical
timescales to the orbit bounce time is compared to the numerical control vagiabtson, which specifies the
number of orbit bounces to evaluate per shortest charaitertsnpeting timescale. A “numerical” orbit timestep
multiplier, goose, is set accordingly, to artificially accelerate the collision and charge exchange operators so that
only goocon orbits need be evaluated per selected characteristic physical timescale. This reduces, by two to three
orders of magnitude, the number of orbit timesteps #ihahecessary to complete each model calculation, without
significantly affecting the results.

The procedure for updatingoose during the fast ion slowing down process has been generalized. The
traditional NUBEAM procedure measures orbit half boas by successive midplane crossings. However, it has
been recognized that there exist tolak field equilibria which support classes of orbits that never reach the plasma
midplane. For example, spherical tokamak equilibria can have off-midplane local field minima, in which ions with
low parallel velocity can be trapped. Even in convendl aspect ratio tokamaks where each flux surface field
minimum occurs at or near the outer flux surface midplane intercept, collisional orbits near the trapped passing
boundary can travel for long periods of time without a midplane crossing. Therefore, a “backup” goose update
mechanism has been introduced in the code. This is based on a zero-banana-width estimate of expected bounce
time for trapped orbits, localized to each flux surface. If, gtt@@me, an orbit's actual travel time (since last goose
update) exceeds more than twice the zero-banan#tiolince time estimate, the ion’s goose factor is updated
immediately, without waiting for theaxt midplane crossing; the goose farcis also reduced by a factor of two,
to empirically compensate for the relative infrequency of updates of the goose factor, and, the midplane goosing
controls (which require two successive crossings) are re-initialized.

The details are as follows. On each flux surfaeeBmin and Bmax are found. For a given trapped orbit on this
surface Brefl, betweerBmin and Bmay, is the “reflection point” where; = v andv; = 0. A handful of Brer values
are chosen as a basis for numerical evaluation of the funegign Bref)) Using the integral

9+(Brefl) dl B 1
=2 / do=L—— (10)
do B, v
0~ (Brefl)

wherel,, is the poloidal path lengthB/B,, is the ratio of total magnetic fie to poloidal component of magnetic
field, andd~ (Brefl) andd™ (Brent) are, respectively, the values nearest #@(Bmin) satisfyingB(9, p) = Brefl. These
values are located numerically with a root finder.

In the zero-banana-width approximation,and magnetic moment? /B are constants of motion. For a
collisionless orbit these considerations lead to

2
v B
v:v,/l——L:vll— . (112)
| v? Bref

This allows thev dependence to be factored out of the above integral, so that

L 9+(Brefl) dl B 1
n=2=2 and L,= / do—L —
v

_ 12
do Bp /(1 — B/ Brefl) ( )

0~ (Brefl)

which only needs to be evaluated at a handful of representative valukg an each flux surface. The integrand
is singular at the end points, but the singularity is integrable unlBgddlis zero at the end points, which happens
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classically, e.g., aBrefl = Bmax, cOrresponding to the “usual” zero-bar@awidth trapped-passing boundary. But in
the general case, for flux sades with multiple local field maria, multiple non-integrablg; values can arise.

Two measures are taken to avoid the singulaitiEirst, in the numerical evaluations df, integrals,
(1— B/Byef) is replaced by ma0~8, (1 — B/Bren)). Second, the representatiBg.q values are chosen at

Brefl(1) = Bmax— §(B),

Brefi(2: 3) = Bmin + 0.75(Bmax — Bmin) £48(B),

Brefi(4: 5) = Bmin 4 0.50(Bmax — Bmin) £ 6(B),

Brefi(6: 7) = Bmin + 0.25(Bmax — Bmin) £48(B), (13)
wheres(B) = (Bmax — Bmin)/100. Then,L, (Brefi(1)) is evaluated and assigned BS(Bmax); MIiN(Ly (Brefi(2)),
Brefi(3)) is evaluated and assigned B(Bmin + 0.75(Bmax — Bmin)), and similarly forL} (Bmin + 0.50(Bmax —
Bmin)) andLj (Bmin + 0.25(Bmax— Bmin)). The choose of the minimum of the evaluation of a pair of values avoids
the singularity on any flux surface for whi@6) has only a small number of local maxima, i.e., all cases as seen
in practice. This procedure results in a handful of nuoaiintegrations on each flux surface, which are very fast
to evaluate.

For use during orbitingl.; is organized as a function of flux surface lapeind dimensionless coordinatg,
defined by the relation

Brefl = Bmin + xg(Bmax — Bmin)- (14)
During orbiting, the two quantities
At (orbit) = [time since last goose evaluation

and

Bmax(orbit) = [maximumB seen by particle since last goose evalugtion (15)

are tracked. Then, for a particle of velocityon flux surfacep,

Bmax(0rbit) — Bmin(p)
Bmax(0) — Bmin(p)

are computed at very low computational cost. The gdastor is updated without waiting for the next midplane
crossing, if the condition

2
Xp= min(l, max(0.25, >> and 1, =—-Lj(xg,p) (16)
v

At (orbit) > 27, a7

is satisfied.

When tested on a conventional tokamak test case (a TFTR supershot), fewer than one orbit in a thousand
experienced goose updates is triggered by the alternative method. Even in NSTX cases with off-midplane field
minima in the equilibrium, due to the beam injection geometry, Monte Carlo ion trajectories which trigger the
backup goose update method are quite rare.

The overall computational overhead of supporting this alternate goose update method lies within the error bars
of CPU time measurement, in brief tests, and is believed to be less than 1%.

Hypothetically, in a simulation where neutrals are injeat&dctly into off-midplane trapped orbits, the absence
of the backup goose update method coelalke large numbers of highly collisionless particles orbiting ungoosed,
resulting in a major loss of computational efficiency plus some accumulation of orbit integration error. However,
such a case has not yet been observed in practice.
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2.4. Effects of sawtooth oscillatiorfishbone ingthilities, and magnetic ripple

Sawtooth oscillations [26], fishbonestabilities P7-29], and magnetic ripple [30] cse perturbations of the
magnetic field and distortions of the fast ions paths, which result in either rearrangement of fast ions within the
plasma or ejection of the ions from the plasma region [30]. Magnetic ripple is the non-axisymmetric variation in
the strength of magnetic field and the non-axisymmaetisplacement of magnetic field lines around the toroidal
circumference of tokamak as a result of the discreteidiad field coils. Fishbone and sawtooth oscillations are
both large scale MHD instabilities in tokamak plasmashB@ne instaltities causes bursts of fast ion losses, while
sawtooth oscillations generally mix fast ions within the central region of the plasma.

The NUBEAM module supports a method to model the effedtsawtooth oscillations based on the Kadomtsev
mixing model [31]. If the sawtooth flags are set, to indicate that a sawtooth crash may occur, the results of
Kadomtsev mixing are precomputed and stored. This includes profiles of the “potential” post-sawtooth fast ion
density and energy content, which the calling code shouéatate to its own grid. If the calling code determines
that a sawtooth crash has indeed taken place prior to the next NUBEAM timestep, then, NUBEAM'’s subroutine
sawnbi is called. This updates the internal state of NUBEAM to reflect the occurrence of the sawtooth. Also, the
calling code updates its own representations of the fast ingityeand other profiles, using the data provided. It is
recommended that NUBEAM timestep boundaries be synchronized (on a transport timescale) with “discontinuous
events such as sawtooth crashes, as well as plasma fueling by neutral pellet injection.

The NUBEAM module calculates losses of fast ions ttushbone oscillations and magnetic ripple [32]. lons
are checked for possible loss due to interactions figtibone oscillations when they cross the plasma midplane.

If the time corresponds to a fishbone event, and if the ion parameters fall within the specified range, the ion is
declared lost from the plasma.

A stochastic magnetic ripple loss criterion [33] is computed in the NUBEAM module for every ion at every
timestep. The parameter that determivwd®ther or not a particle has been lost is

3/2 -1
e 1/dg
S5 = _— —| —|V , 18

Olanom<NT[q> Pg (dyf' W|> (18)

wheree =r/R is the inverse aspect ratid] is the number of coilsg is the plasma safety factor, and is the
Larmor ion gyro radius. This criterion can be adjusted by a user-supplied anomaly dagder The particle is
lost if the toroidal magnetic field ripplé at the bounce point is greater than This model also calculates the
power loss, particle loss, and momentum loss caused by magnetic ripple, and the corresponﬁmgrque and
rotational energy change of the plasma.

In practice, the ripple loss anomaly fact®g,om has been found for select cases by timeslice comparison of
TRANSP results with results from a more detailed and time consuming TF orbit ripple loss calculation, such as
ORBIT [23]. This method has been used to study beam ion and alpha ion losses in TFTR [34].

2.5. Anomalous fast ion diffusion

The NUBEAM module has an option to calculate an anomalous fast ion diffusion operator. This anomalous
diffusion model can be applied to beam ions and fusion products separately, or to all the Monte Carlo particles.
The calling code sets the anomalous diffusivity, which can be a time varying radial profile.

The NUBEAM code allows fast ion anomalous diffusion to be specified as a function of the fast ion energy. The
method is to specify, via an input parameter list, a piecewise linear function giving the energy dependence of the
fast ion anomalous diffusion coefficients. This functisiiridependent of all other coordinates such as space, time,
and the species’ indices.
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2.6. Finite Larmor radius adjustment

NUBEAM'’s guiding center drift orbit integrator computes the trajectory of fast ion guiding centers, but, actual
particle positions are separated from their guiding centers by a Larmor radius. By choosing a random gyrophase
angle, NUBEAM’s Finite Larmor Radius (FLR) adjustment causes particle collisions, beam—target fusion, and
atomic physics reactions, and fast ion loss to the limitewall, all to be calculated out at the particle position,
rather than at the guiding center.

NUBEAM supports two FLR adjustment models. For a fast ion of atomic weightand numberZ,, the
“traditional” model approximates the Larmor radius

Py =Apmpvy /ZpeB, (19)

as independent of gyrophase adbased on the magnetic fieR} at the orbit guiding center. After selection of

a random gyrophase angle, the particle displacement, hidontiae guiding center field, is calculated directly in

[R, Z] coordinates and mapped to back to flux coordinates by a fast bilinear map. Plasma parameters are then
found at the chosen particle position for the calculaté collision operator, charge exchange, etc.

While the traditional model is computationally effinote and adequate for most conventional tokamak
applications, use of a gyrophase-invariant Larmor radius is not sufficient in certain low field spherical tokamak
configurations. Therefore, a “geneedd” FLR model has been added to the code.

In general, the FLR effect introduces a displacemgitof each fast ion within the gyro plane

AX = pgla(éycosa + € sina) +bey], (20)

wherep, is the guiding center Larmor radius of the fast iep—= Eg/Bg is a unit vector defining the direction of

the magnetic field at the guiding centé@ is the magnetic field at the guiding center in contrast vith which

is the magnetic field at the location of a fast ion (gyro pdinté, is the unit vector normal to the flux surface at

the guiding centeg | =¢, x €|, « is the gyro angle that defines a plane within which the gyro poistiocated,

anda andb are coefficients that describe the displacemensediby the change of magnetic field within a Larmor
radius. If the change of magnetic field within a Larmor radius is sm&l},B < 1, or in other words, the Larmor
radius p, is much smaller than the characteristic scale length of the magnetic field grédiept, <« Lg, the
displacement from the guiding center is bd®n the magnitude and direction of tﬁg field at the guiding center

and the coefficienta andb go to 1 and 0 correspondingly. These sef are inherent to the traditional FLR
model in the NUBEAM module and are used by default. These assumptions for the magnetic field are not valid
for discharges with higl$ or low aspect ratio, where the magnetic field can be small inside the diamagnetic well
and orbit losses are overestimated [35]. The new FLR nasks the displacement frothe guiding center, which

is based on the magnitude and direction of the magnetic field at the gyro point, instead of on the magnetic field
at the guiding center. Then, the coefficieatandb are to be found to satisfy the energy and canonical angular
momentum conservation conditions in the axisymmeiRicZ) coordinate system:

2qp
U%:vgz— ﬁ(@[ —¢g), (21)
R qb
Vpy = R_fi, Vg Ric (Ye — K[fg), (22)

where the indexeg and¢ represent the gyro center and gyro point correspondiily,is the radial coordinate,
Vge.¢ is the poloidal flux,®, ¢ is the electrostatic potentiali; , is the velocity of the particle, and,, =
(77g 'ZII)ng/Bg-
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Assuming that the displacemenf is orthogonal to the magnetic fielsy at the gyro point, one can show that
the functionV (a, b) defined as

2 2
ZpeBy . 1 A
V(a,b)= H bt (Ax xep|| + ﬁ(uﬂ —(Ax x e)) 'W) , (23)
mcuyg (@¢-e)=\ ve
is unity at the gyro point
V(a,b)=1. (24)

The latter equation together with thettwogonality condition for the displacementt
X(a,b)E(A)?~§||):O (25)

provide the complete set of equation for the coefficierasmdb that define the displacementr in Eq. (20). Once
the displacementis calculated, tREIBEAM module checks whether or not thanticle is lost to tle limiter (leaves
the plasma).

A two-dimensional Newton iteration method is employed to solve Eqgs. (24) and (25). This requires computation
of the Jacobiaiid (X, V)/d(a, b)) within the iteration. A numerical computation of trle Jacobian using central finite
differences is performed. The NTCC XPLASMA module is used for computingBth¢g and @ functions, and
so the computational cost of computing the Jacobian using five points i th¢ plane is reduced due to the
vectorized nature of the XPLASMA module. As an aftative, a two-dimensional secant method can be used,
which starts with a numerically computed Jacobian, and then the Jacobian is updated along with the solution in
subsequent iterations. The first iteration requires five points itithi®) plane but the following iterations require
only a single point unless the iteration scheme needs to be restarted. There are fewer function evaluations per
iteration but, because the secant method converges rmwdy sthere are more iterations. The secant method
appears to have a slight benefit in computation time over the Newton method though it should be noted that the
first step, which is the same for both the Newton and secattods, typically takes the starting point fairly close
to the final solution. For both the Newton and seaaerthods, the iteration scheme is started atthe (, b =0)
point, which corresponds to the point on the gyro orbit returned by the older FLR model.

In both FLR models, the guiding center of a fast ion is found at deposition time by making a Larmor
displacement based on the magnetic field at the poinomization. The guding center is then incrementally
advanced for each ion. The tracking of the high enerangd gyro radii ions present in a spherical tokamak by
means of their guiding centers has been shown to be valid by Mikkelsen et al. [35].

After advancement of the guiding center for an ionaadom gyro phase is chosen and the position of the ion
on the gyro orbit is computed from a Larmor displacemesimg the traditional FLR model or through the iteration
method of the new FLR model. The space and velocity distribution of the fast ions can be computed at this point as
a density in the guiding centers or a density of the ionshe gyros. Due to the random gyro phase displacement,
the fast ion distribution on the gyro tends to have more Monte Carlo noise then the distribution at the guiding
center.

Table 2 compares the total limiter and charge exchange power loss, beam heating power, neutron production,
and Monte Carlo CPU time for two NSTX cases computed with the traditional and new FLR models. The first case
corresponds to the NSTX discharge 109070, 0.4 s after beam turn on from current NSTX data. The second case
is based on profiles predicted for high beta plasma with a markedly different current profile than that of 109070.
The simulation of NSTX discharge09070 showdittle difference between the neand traditional FLR model,
while the simulation of the high beta shot shows much smaller fast ion losses outside the plasma boundary with
a corresponding increase in beam heating and neutron production. Both cases indicate a severe runtime penalty in
this section of code when using the new FLR model duegs#arch scheme inherent in this model. The traditional
FLR model is therefore generally used for new runs while the new FLR model is used for checking for possible
large Larmor radius effects. The inclusion of a full orbit code into NUBEAM, which can later be parallelized, is
being investigated.
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Table 2
Beam heating power, total limiter and charge exchange powerression production, and Monte Carlo CPU time with new and traditional
FLR models for two NSTX discharges

NSTX 109070 NSTX highg

Traditional FLR New FLR Traditional FLR New FLR
Limiter and charge exchange loss [W] 25 10° 54 x 10° 35x 100 2.6 x 10°
Beam heating power [W] 2 10° 2x 108 5x 10° 9x 10°
Neutron production [1/s] o x 104 4.0 x 1014 1x 1014 3x 1014
Monte Carlo CPU time [hours] 0.5 4.0 0.1 0.5

3. Using the NUBEAM module
3.1. Initialization of the NUBEAM module

Almost all of the NUBEAM input and output parameters are passed to the NUBEAM module as elements of
Fortran-90 compound data types. More detailed up-to-date descriptions of these structures can also be found on
the Internet in the appendices of the NUBEAM User Guide on the NUBEAM webpage under the NTCC website,
http://w3.pppl.gov/INTC(2]. The input data structures are listed in Appendix B and the output data structures
are listed in Appendix C. The total collection of compouwdata type definitions are caihed in the Fortran-90
module namedbi _t ypes. f 90, which is imported into the user’s software by employing the statement

use nbi _types

The nbi _t ypes module defines data types only—it does not contain any actual data. To communicate with
NUBEAM, the user’'s code declares an instance of eggpropriate data type. When setting up input for the
NUBEAM module, the following steps need to be implemented: An instance oftgpeype_sys, for example,

is created; the corresponding NUBEAM routin®éi _i nit _sys is called to set default values for the data
elements in this instance; the user’s routine can modify individual elements as desired; and then the NUBEAM
routinenbi _set sys is called to pass the instance of the compound data type as input to the model. The
following code example illustrates this process:

use nbi _types

type(nbitype sys) :: zsys I declaration of variable zsys for
I basi ¢ NUBEAM system i nputs

call nbi _init_sys(zsys) I load defaults in zsys

! user needs to set only those data el ements for which non-default
! values are desired. For exanple:

zsys%unid = my_runid
zsys%onlin = nmy_nsg_|l un

set RUNID string
set Fortran unit nunber for
nmessages

|
|
!
I set random nunber seed

zsysY%mseed = my_seed

call nbi_set _sys(zsys) I systeminput paraneters are passed
I to the NUBEAM nodul e.
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This method (the use of Fortran-90 compound data types for specification of inputs) has some significant
maintenance advantages. In particular, the NUBEAM developer can add new input options to the code without
breaking existing user installations, provided intelligent default settings are specified.

There are some ordering and update restrictions on how inputs are presented to NUBEAM. More precisely,
certain array dimensions must be given first becausedbeirol the dynamic allocation of arrays for NUBEAM'’s
internal memory; an instance of the typbi t ype_di ns is used to set this array dimension information. Then,
there are a set of inputs that can only be specified once at the beginning of a run, and cannot be modified
subsequently: geometries of individual beam-lines are an example of this class of inputs. Such inputs are maintained
in NUBEAM’s state file; if a code is restarted, the NUBEAM module will find them in the state file and NUBEAM
does not need to receive them a second time from thgriated modeling code. Finally, there are a set of input
parameters, such as the powers and voltages on eacliteamhich are updatable and which are expected to vary
in time.

Complete definitions of the compound data types used for input are fomtdipec. dat , which is distributed
with the NUBEAM module and is described in Appendix D. This file, which serves as input to a Python code gen-
erator script that actually builds the NUBEAM interface layer, is therefore functionally guaranteed to be up-to-date.

3.2. Use of the NTCC XPLASMA module

The NTCC XPLASMA module is a general tool for representing and sharing plasma geometry and profiles,
and for interpolating the profiles between disparate grids. The XPLASMA module at present is restricted to
axisymmetric configurations. The way that the XPLASMA module is used within the NUBEAM module is
described in this subsection.

In setting up the call of the NUBEAM module in a new &pgtion, the plasma MHD equilibrium and vari-
ous plasma parameter profiles must be loaded irdtotBLASMA module. The equilibum can either be loaded
directly via the appropriate XPLASMA calls, or it can be loaded from a standard data source such as EFIT [36]
or from TRANSP MDSplus trees [37,38], which are available from various tokamak experimental databases. The
NTCC module I2ZMEX can be used to load XPLASMA with narical axisymmetric MID equilibria from var-
ious sources; the NTCC module TRXPLIB can load bathibria and TRANSP profiles such as temperatures
and densities into the XPLASMA module. Equilibrium arldgma parameter profiles are defined as a function of
the standard flux surface label coordinate- /@ /®g, whered is the toroidal flux enclosed within a given flux
surface andb is the toroidal flux within the outer plasma boundary. The flux surface coordinastea dimen-
sionless variable ranging from 0 at the magnetic &xi$ at the plasma boundary. In addition, XPLASMA allows
equilibria to be numerically extrapolated in order toyide a nested set of nominal flux surfaces beyond the edge
of the plasma ap = 1. These surfaces with > 1 are numerical surfaces only; the relation to the physical toroidal
flux does not apply (or only applies very roughly) beygnet 1.

The XPLASMA module allows the specification of an axisymmetric wall or limiter, which is a closed path
encompassing a region that includes the entire cross-section of the core plasma. This limiter or wall is used to
define orbits that are lost to the plasma: a NUBEAM Monte Carlo ion is not considered lost, even if it crosses the
plasma boundary, unless it comes within a Larmor radius of a physical limiter. Therefore, the NUBEAM module
requires that XPLASMA be given a wall configuration, and that the equilibrium be extrapolated to give a nested
toroidal flux surface system large enough to fill the rectaf@gn, Rmaxl BY [Zmin, Zmax] defined by the minimum
and maximum major radius and elevation of the given wall configuration. The extrapolation can be achieved by
calling the XPLASMA routineeqgm br z after the wall coordinates have been loaded. If the equilibrium is built
directly from EFIT results that already cover the exterior vacuum region, the extrapolation is not required.

In addition, XPLASMA supports the definition of an irregul2-D grid, illustrated in Fig. 3, that is used by
various TRANSP models for fast ions. This grid consists dfabzones that are subdivided poloidally, with fewer
subdivisions near the center of the plasma and more subdivisions toward the edge of the plasma, yielding a set
of subzones with roughly equal cross-sectional areé Z¥D grid is created by calling the XPLASMA routine
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Fig. 3. Irregular 2-D grid.

mcgri d_def i ne. Within each radial zone, the poloidal zones are spaced equally i dimension, which is
the poloidal angle coordinate implicitly fileed by the supplied 2-D MHD equilibrium.

In general, XPLASMA allows for the definition of profiles in any of the forrfigo), g(p,6), h(R, Z). As-
sociated with each such profile is a unigue name andique integer “XPLASMA D", which is assigned au-
tomatically by the XPLASMA module. NUBEAM acquisghe input profiles it needs by receiving “XPLASMA
ID” integers specified as members of a compound data type (Fortran-90 type) used for input, as described in the
previous Section 3.1. Almost all NUBEAM profile inputs are of the fofitp), with p in the rangd0, 1]. Ex-
trapolations of profiles beyond the plasma boundary are not required. When NUBEAM sets up a timestep within
its calculation, it uses its own XPLASMA calls to remap the profiles from the caller's grid to NUBEAM’s own
internal grid.

Similarly, on output, the NUBEAM defines a large sétXPLASMA profiles, which are each identified by a
unique integer ID. These profiles are returned to the caller as members of compound data structures, which are
fetched with calls to the appropriate data retrieval routines after the NUBEAM timestep calculation is completed.
The caller can then use XPLASMA interpolation routines to remap the data to the caller’s grid.

There is also a set of spatially 2-D data defined on the XPLASMA irregular 2-D grid. These profiles include
2-D neutral source and neutral sink data, and thiedistribution functions fo each fast ion species.

The NUBEAM input/output interfaces are written by mgia Python code generatdhe generator input
specification file is an ASCI! file that is designed to be understandable by the user. Itis a useful document in its own
right, as is described in the previous section and in Appendix D. The python generator also writes an HTML file
that fully describes the generated components oNGBEAM input and output interfaces—both subroutines and
Fortran-90 compound data types. This webpage itgplosith the NUBEAM module webpage as documentation,
under the NTCC website [2].

The XPLASMA module is one of the eight NTCC nodules that are used by the NUBEAM module. All eight
NTCC modules are listed in Appendix E, with a brief description of each module.

3.3. Running the NUBEAM module in a transport code

A typical sequence of calls for the time-dependent use of NUBEAM fast ion simulations includes the following
steps once the NUBEAM module is initialized with aiitial set of control inputs and array dimensions:

(1) Initialize the XPLASMA MHD equilibrium and associated profiles;
(2) Update inputs to the NUBEAM module, such as tlosvpr injected with each beam; and “XPLASMA ID”
integers for the plasma parameter profiles at the current timestep;



A. Pankin et al. / Computer Physics Communications 159 (2004) 157-184 175

(3) Have NUBEAM interpolate XPLASMA profiles to its internal grid with error checking of the profile data (call
NBI_INTERP_PROFILES);

(4) Initialize NUBEAM timestep and perform furtherror checks on the input data (call NBSTART);

(5) Compute beam and fusion product deposition (call DEPALL);

(6) Compute orbiting and slowing down (call ORBALL);

(7) Finish timestep (call NBFINISH). All output profile data are stored in the XPLASMA module. Scalar data
and XPLASMA IDs can be fetched through compound data types using calls to NUBEAM'’s generated
nbo_get * routines;

(8) Get NUBEAM outputs.

An example of the Fortran-90 user code needed to advance the NUBEAM module through a timestep is given
below:
CALL <ny_xpl asma_set up> I get XPLASMA WHD equilibrium and
! profiles ready
CALL <my_NUBEAM set up> ! set/update inputs to NUBEAM XPLASNA
!
|

profile ids, power injected with each
beam etc.

CALL NBI _| NTERP_PROFI LES(i err)
I interpol ate XPLASMA profiles to NUBEAM
! internal grid. Check error code (0=CK).

! at this point all input data has been | oaded i nto NUBEAM

CALL NBSTART(i err) ! NUBEAM cal |l -- initialize timestep.
if(ierr.ne.0) then [... inmplenent error handling ...]
CALL DEPALL(i err) ! NUBEAM cal | -- beani f usi on product
! deposition
if(ierr.ne.0) then [... inplenent error handling ...]
CALL ORBALL(iorbtot, ierr)! NUBEAM call-- orbiting and sl owi ng down
! integer, intent(out) :: iorbtot returns
! zero if there were no orbits to follow
if(ierr.ne.0) then [... inplenent error handling ...]
CALL NBFI NI SH(ierr) I NUBEAM cal | -- finish timestep.
if(ierr.ne.0) then [... inmplenent error handling ...]

! at this point all output profile data are in XPLASMA. Scal ar data
! and XPLASMA id’'s can be fetched through conpound data types using
! NUBEAM s generated nbo _get * calls.

CALL <my_out put _extractor> ! get NUBEAM out puts.

The implementation of the NUBEAM module in the TRANSP code allows an estimate of time required by
the NUBEAM module for a typical run simulating a neutral beam heated tokamak plasma. For example, a single
processor computer time using an Intel Pentium IV 2 GHz chip running under Redhat Linux 7.2 operation system
was used for a test run. Fig. 4 shows the CPU time distribution between different modules for a simulation of TFTR
discharge 37 065, which is used as a test case for the TRANSP code. The simulation is started at 3.0 sec after the
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Fig. 4. CPU time distribution.

discharge is initiated and the beam deposition begins at 3.5 s. Timesteps in the TRANSP code are adjustable and the
NUBEAM code is not called each timestep. Based on the experience gained from intensive use of the NUBEAM
package in the TRANSP code, it has been found that a sufficient time interval between calls to the NUBEAM
module is 0.01 s for most current tokamak discharges (the NUBEAM timestep should be short compared to typical
slowing down times of newly deposited fast ions). The value of time interval used in our simulation is 0.01 s. The
CPU time used by the NUBEAM modulgueeam, the XPLASMA modulerxpasma, and the remainder of the
TRANSP codetransp add up to the total CPU timgoraL:

ITOTAL = INUBEAM + IXPLASMA + ITRANSP.

In this particular example, the NUBEAM module uses about two thirds of the total CPU time in a TRANSP
simulation. The average time used by the NUBEAM module per call is about 25 s during the NBI phase of the
discharge.

4. NUBEAM module output

The output from the NUBEAM module at a given timestep can be divided into three categories: scalars or
arrays of scalars; 1-D profileg (p); and 2-D profilesf2(p,60) on the 2-D irregular grid that is described in
Section 3.2.

In the first category, the variables contain 0-D information such as contributions to the global energy
balance, momentum balance, or particle balamme dach individual fast ion species. These are typically
arrays of numbers dimensioned by the fast ion inderay dimension. The 1-D profiles are defined on
the NUBEAM internal grid but stored as XPLASMA objects, allowing interpolation to the caller’s own
radial grid as a function ofp. For each 1-D output profile, a unie integer XPLASMA ID code is
returned.
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Output variables are organized into several bloeksh of which corresponds to a compound data type definable
in the caller's code by the statement

use nbi _types
The caller’s code creates an instance of each output data type, such as

type (nbotype power_ bal ance) :: zpbal
type (nbotype powers) :: zpowers

Then, after the beam code timgsteas been completed, the caller code must issue a call, such as:

call nbo_get power bal ance(zpbal) ! getting scalar power bal ance from
! the NUBEAM code

after which individual elements can be extracted into the caller’s data structures. This is illustrated in the following
example

do isi=1, nsfast I loop over transport code's fast specie |list

itype=0 I transp code determ nes fast ion type:

I Fokker- Pl anck nodel ed RF fast ions,

I not handl ed by NUBEAM coul d be present.
if(...[NUBEAM beamion]...) itype=1
i f(...[NUBEAM fusion product]...) itype=3

if(itype.gt.0) then
i sb=i ndex_nbfi (Z(isi),A(isi),itype) ! get NUBEAM s speci e index
I all argunents: integer

pinjs(isi) = zpbal %injs(isb) I copy out NUBEAM conpound type
pshi ne(isi) = zpbal %pshi ns(isb) I data menbers. These are
C I scal ar power bal ance terns.
endi f
enddo

The definitions of the compound data typesiispec. dat are described in Appendix D.
To retrieve the heating profiles, the user code employs:

use nbi _types

type (nbotype powers) :: zpowers ! declaration of variable

I zpowers, which has Fortran-90

! conpound data type nbotype_powers
! and contains ids of all 1-D

|

power profiles

call nbo_get powers(zpowers) I get profile ids
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id = zpowers% o_pbi ! interpolate PBI to user grid
call my_xplasnma_extractor(id, my_pbi_array, ...)
id = zpowers% o_pbe ! interpolate PBE to user grid
call my_xplasma_extractor(id, nmy_pbe_ array, ...)

In the last lines of this example, the subroutmg Xxpl asna_ext ract or, is a user written routine that
uses XPLASMA to interpolate the NUBEAM profile data to the caller’'s own radial grigh,irwith possible
normalizations or transformations of units applied. The majority of NUBEAM output profiles are integrated
particle, power, torque, source or energy density profiles in MKS units. The typical method employed to reconstruct
the local density on the user’s radial grid is to use the XPLASMA module to interpolate the integrated particle
profile to the boundaries of the user’s rho grid, and then compute the particle density using

~_ Njyy2—Nj-12

7 dv;
wheren; is the density in the user’s zone N, 11,2 is the integrated particle profile interpolated to the boundaries
of zonej; and d/; is the volume of zong. The variableV;.1,> is computed using the XPLASMA interpolation
from the corresponding NUBEAM variable.

The NUBEAM module creates several outputs on the irregular @®) grid that is illustrated in Fig. 3.
These arrays are transferred from NUBEAM to the XPLASMA module. Although XPLASMA routines exist
for fetching both the data and a description of the irregular grid, the interfaces are still being developed and,
consequently, will not be described here. Documentation will be provided in a future release of the NUBEAM
module.

The following outputs are defined over the 2-D grid:

(1) volumes of 2-D irregular grid zones;

(2) density profile for each NUBEAM fast ion species;

(3) profile of average fast ion perpendiauenergy, for each NUBEAM fast species;

(4) profile of average fast ion parallel energy density, for each NUBEAM fast ion species;

(5) target fusion reaction rates between fast ions &edntal ions for each fusion reaction channel; reactions
involving beam injected ions are counted separatelynfreactions involving the fusion products, Tritium or
Helium-3 ions;

(6) fast-ion—fast-ion fusion reactioates for each fusion reaction channel;

(7) neutral source profile for each thermagsges, as driven by each NUBEAM fast ion species;

(8) charge exchange neutral sirdke estimate for each species of thermal neutrals due to each NUBEAM fast
ion species;

(9) impact ionization neutral sink rate estimate éach species of thermal neutrals due to each NUBEAM fast
ion species;

(10) Monte Carlo summed fast ion distribution function as a function of 2-D grid zone index, velocity pitch, and
energy, for each NUBEAM fast ion species.

5. Summary

The NUBEAM module, which computes the power depositind ather source profilehat are consequence of
Neutral Beam Injection (NBI) in magnetically confinethpmas, has been extracted from the TRANSP integrated
modeling code [7-10] and modified to meet the standards of the National Transport Code Collaboration (NTCC)
module library [1,2]. The NUBEAM module provides a comprehensive computation of the effects of NBI in
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tokamak plasmas. The centerpiece of the NUBEAM module is a Monte Carlo computation of the trajectories of
neutral atoms and fast ion orbits within the magnetically confined plasma, together with the associated atomic
physics, collisional interactions with the thermal targetspha, and predicted nuclear reaction rates. The module
includes options to compute the effects of large esdabtabilities, such as sawtooth oscillations and fishbone
instabilities, as well as the effects of magnetic ripple. Al NUBEAM dependencies are resolved within the NTCC
library; NUBEAM uses eight other NTCC modules (see Appendix E).

The main challenge encountered with extracting this module was caused by the fact that the original NUBEAM
package shared more than one thousand variables that were stored in the large common blocks of the TRANSP
code. As the NUBEAM code was turned into a module, these variables were organized into 370 input, 365 output,
55 input and output variables, and the remainder as variables that are internal to the NUBEAM module. All of
the input and output variables were organized into publicly defined Fortran-90 compound data structures. The
interface for these structures is written with a Pythongarbde generator. Defdwalues are assigned to all
of the input variables in order to minimize the number of variables that have to be set by the user. The NTCC
XPLASMA module [1,2] is used to interpolate all of the profiles from the user’s spatial grid to the NUBEAM
spatial grids and back again. The result of all thelsanges is the transformation of a large legacy code into
a portable, reusable, and well documented module with encapsulated data, physics, and interpolation methods.
Moreover, the NUBEAM module described in this paper has now been introduced back into the TRANSP
code and is used to carry out the NBI computations in the TRANSP code. This has allowed validation of the
results produced by the NUBEAM module and facilitatesufe improvements of the treatment of the NBI
physics in the TRANSP code as well as in other transport codes in which the NUBEAM module is being
installed.

Appendix A. Physical elements of the NUBEAM module
The NUBEAM module self-consistently takesardccount the following physical processes:

(1) Beamline geometry and beam composition by isotope, with time dependent specification of power, voltage,
and energy fractions for each beamline;
(2) Trajectory of neutral atoms passing through thesma, with deposition of neutral beams and charge-
exchange loss and recapture of partially slowed down fast ions;
(3) Guiding center fast ion orbits: trajectories of fast ions within the plasma, including banana orbits and the loss
of the ions to the walls;
(4) Collision operator and thermal plasma source terms: heating rates, momentum sources, current source,
particle sources;
(5) Anomalous diffusion of fast ions;
(6) Neutral particle—fast ion reactions: ionization, charge exchange, and a model for multi-step ionization as a
result of excitation effects;
(7) Multiple fast ion species including fusion produast ions treated as separate Monte Carlo species; multi-
species target plasma;
(8) Effect of magnetic ripple;
(9) Effect of large scale instabilities, such as fishbone instabilities and sawtooth oscillations;
(10) Finite Larmor radius corrections, collisions or losses at the actual particle position, not at the orbit guiding
center.
(11) Estimates of fusion reaction rates, separated ngtlpnteaction but also by reagent types, e.g., beam-target
and beam—beam reactions counted separately; and
(12) Numerical estimate of the entire fast ion distribution function, suitable for subsequent use e.g., by diagnostic
simulation models.
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Appendix B. NUBEAM module Fortran-90 input structures

Structure Description
1 Sys basic system information for Monte Carlo code
2 tines start and stop times for the current timestep
3 grid basic grid information
4 beans the beams and the thermal plasma species
5 impurity atomic weight and atomic number of the impurity species
6 mnority RF minority species
7 power s beam powers, voltages, and energy fiausi (at full, half, and one third energies)
8 fusion fusion products
9 fpp Monte Carlo code support for Fokker-Planck model
10 num numerical controls
11 atom c atomic physics controls
12 collid collision operator controls
13 flr finite Larmor radius corrections
14 saw sawtooth model controls
15 adi f description of anomalous diffusion effect
16 ripple description of magnetic ripple effect
17 out con code output control options
18 fi shbone specification of fishbone model
19 box beam-in-box neutral density calculation controls
20 m sc miscellaneous options and parameters, such as options for calculation of fast ion driven current
21 profiles “XPLASMA IDs” of the profile inputs to the NUBEAM module
22 fusion reaction rate parameters to be included
23 density arrays associated with sawtooth mixing

Appendix C. NUBEAM module Fortran-90 output structures

Structure

Description

ol
P OOWoO~NOURAWNE

NNNNRPRRERRERPRE
WNPFPOOWO~NOOOWN

deposi tion

n0_f ast
trap_fraction
erngfi _out put
aver age_energi es
excited_states
nc_statistics
rotation

conpr essi on
power s

currents

neutral _sources
recapture
neutral _sinks
sour ces

f okker _pl anck
radi al _current

t or ques

hi _z_beans

power _bal ance
nmonment um bal ance
t or que_wor k
particl e_bal ance

energy and particle deposition profiles

flux surface averaged fast neutral density profiles

fraction of “banana trapped” ions

densities and trapping fractions

average parallel and perpendicular energies, average energy

excited states correction profiles (flux surface averaged)

statistics that are computed after deposition and before slowing down

approximate toroidal angular velocity s, before and after sawtooth crash

heating profiles resulting from compression
heating profiles inside flux surface

driven current profiles

neutral sources

profiles showing processes for recapture of charge exchange fast neutrals

flux surface averaged sink rates for thermal neutral gases
electron and ion density source profiles

profiles related to the collision operator

radial current profiles through boundaries

torques applied to thermal plasma species

average charge state of orbiting heavy ionsZor 2

data related to scalar power balance for beam species
guantities related to scalar angular momentum balance

power associated with work done by the beam on a rotating target plasma

information related to fast ion particle balance
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Appendix D. Use of Python code generating scriptsto build input and output structures

A Python code generatarbi gen. py, is used to maintain the NUBEAM interface and state file input/output
facility. The use of a code generator makes it much easier to add new input and output options to the NUBEAM
module. By using compound data types with defaults,ipewlded input options can be safely defaulted without
breaking the existing user code. In particular, a new option can be added to NUBEAM, and the updated NUBEAM
code distributed, without breaking user implementations that might not use of the new option.

The NUBEAM source is distributed withbi gen. py together with the filenbspec. dat, which is the
NUBEAM module data specification file. Wherbi gen. py is run, it reads th@bspec. dat file and uses the
specifications to write interface routines suchnéé _i ni t _sys andnbi _set _sys, as well as NUBEAM’s
internal data modulesbi _di nensi ons andnbi _com

Thenbspec. dat file is important because it defines the attoput and output data for the entire NUBEAM
module and the module’s internal data structures, as well as defining elements of the state of the time-dependent
NUBEAM calculation. Thenbspec. dat file is well commented, and the user is able to refer to it for many details
of NUBEAM input/output. Those comments in tdspec. dat file that start with “I" pertain to NUBEAM
data elements; comments that start with “#” pertaimtispec. dat format and details of the python code
generator.

Each element of each compound data tigodefined in the data structure filbspec. dat in lines of the
form:

<data-type>[Al[S][code] <nane>[(dims,...)] [! coments...]

where <data-type- is a Fortran data type code (R=REAL, D=REAL*8, I=ZINTEGER, L=LOGICAL), [A] is an
optional indicator that the variable is an array, and [S] is an optional flag that indicates whether the variable is
used during next timestep by the NUBEAM module and should be saved in the NUBEAM staterfideje- is

the name of variable, and [(dims,)] are optional dimensions of the variable. There is also an optional symbolic
[code] specification, which indicates a profile subtype and is defined as follows:

[code] Description

Indicates a variable such as “average energy” whiclmds integrated from the axis. These variables require
smoothing.
Indicates a variable such as “slowing dotime” which does not require smoothing.

| Indicates a boundary oriented “flow” variable. Intdipahese are Monte Carlo sums of flows across boundaries.
These variables do not require smoothing.

@ Indicates profiles, which specify an enclosed toroidal current as a function of flux surface label. These profiles are
integrated using the cross-sectional area rathean the volume of plasma flux zones and are smoothed.

As an example of a scalar data definition, the Fortran-90 compound data stppeotwe bal ance contains the
specifications:

DA pinjs(mbs) ! watts
I injected power (or fusion product source power),
I by speci es.

D pftota I watts
I grand total power in fusion product source
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The 1-D profile outputs are similarly declared, but are identifiable by the presence of the array dinmgnsion
which is the radial grid dimension used in the NUBEAM module. Thus, for example, the Fortran-90 compound
data structur@ower s contains:
DA pbe(mnmj) I watts
! power to electrons from beam heating
! for electron power bal ance
I watts
! power to ions fromfast ion heating, by species

DA pbis(nj, m bs)

These declarations define a set of XPLASMA output pesfiThe corresponding compound data type for each of
these items contains an integer scalar or array which is formed by deleting the radial dimension from the above
specifications. For example, in this case:

integer :: id_pbe, id_pbis(nibs)

which are members of a compound Fortran-90 structure ofrijyo¢ ype__power s. The array dimension symbols
nj andmi bs indicate the radiap grid and the fast ion species indexingspectively; these are defined near the
beginning ofnbspec. dat .

In summary, the code generator reads

nbspec. dat -- NUBEAMi/o and nodul e data specification file
basic data types are:
R -- REAL,
I -- | NTEGER,
L -- LOd CAL,
D -- REAL*8S,

C'n -- CHARACTER*n.

An instance of each specified itemis generated

in NUBEAM s internal Fortran-90 nodule; in addition,
i nput/output itens are nmade nmenbers of publicly

decl ared conpound data types used for transfer of
information in and out of the NUBEAM i nternal nodul e.

and the code generator writes the following NUBEAM input component files:

— nbi _di nensi ons_nod. f 90 andnbi _com nod. f 90. NUBEAM’s internal Fortran-90 modules. These
should not be referenced directly by user code, bey ttontain copies of comments from nbspec.dat, and may
be useful as documentation.

— nbi _types. f 90. Public Fortran-90 module defining input/output data structures.

— nbi _al | oc. f 90. Allocate most NUBEAM data structures based on user specified grid sizes—called by
user after a successfabi _set _di s call...

— nbi _al | oc2. f90. Allocate remainder of NUBEAM data structures based on additional user input (e.g.,
desired number of Monte Carlo particles in simulation). The user does not call this directly.

— nbi _dal | oc. f 90. Deallocate NUBEAM data structures. Since the NUBEAM simulation has state, this
should not be done unless all NUBEAM fast ions have thermalized, and NUBEAM is never again to be called.

— nbi _init.f90. Set defaults for input data structures.
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— nbi _set. f90. Pass inputs to NUBEAM. Since NUBEAM assumes state, this is generally done ONLY
ONCE per run per input data structure.

— nbi _get . f 90. Fetch current settings of input data structures.

— nbi _updat e. f 90. Update input. Most input data elements are not updatable. For example, array dimensions
can only be set once at the beginning of a run. Attempts to update non-updatable members are ignored. See the
Inputs section for more details.

— nbi _state_i o.f90. Subroutines for NUBEAM state save/restore operations. User callable routine: see
nbi _states. f 90.

— nbi _ascii.f90. ASCIlI dump of NUBEAM input andutput quantitiesfor debugging.

— nbo_get . f 90. Retrieve NUBEAM output (into output data structures).

Appendix E. NTCC modulesrequired by the NUBEAM module

The NUBEAM module is a module of the NTCC module library [1,2]. The NUBEAM module together with
its driver program and test cases can be downloaded from the NTCC module library web site [2]. The NUBEAM
module uses other NTCC modules, which are briefly described below.

— The NTCC PREACT module performs lookups and interpolation of the rate (weighted product of cross-section
and velocity) of various charge exchange, ionization, and fusion reactions.

— The NTCC PORTLIB module provides a number of “operating systems support” functions, for which
a standard interface is not available: access to the shell, access to command line arguments, access to
environment variables or previously used logical names, elapsed CPU time, and so on.

— The NTCC XPLASMA module providesstandard representation for ptag MHD equilibria and parameter
profiles. The module includes routines for setting up tipailéorium, profiles, scrag-off region definition and
limiter specification and routines for coordinate transformations.

— The NTCC PSPLINE module contains a collection of Splamd Hermite interpolation tools for 1D, 2D, and

3D datasets on rectilinear grids. The splinetioes yield full controlover boundary conditions.

The NTCC EZCDF module provides an easy interface for netCDF routines.

The NTCC KDSAW module is the Kadomtsev-style MHD sawtooth “mixing model”.

The NTCC R8SLATEC module is a library of mathematical subroutines.

The NTCC RANDOM module is a portable, paral#ible, high quality random number generator.

More detailed information about these modules is available at the NTCC module library web site [2].
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