
c

. It is
mas due
to
the

nt. These
ITER. The
ort Code
e
sed. The
cription

kamak
ion of
ics
r

Computer Physics Communications 159 (2004) 157–184

www.elsevier.com/locate/cp

The tokamak Monte Carlo fast ion module NUBEAM
in the National Transport Code Collaboration library✩

Alexei Pankina,∗, Douglas McCuneb, Robert Andreb, Glenn Batemana, Arnold Kritz a

a Lehigh University, Physics Department, Bethlehem, PA 18015, USA
b Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

Received 27 June 2003; accepted 17 November 2003

Abstract

The NUBEAM module is a comprehensive computational model for Neutral Beam Injection (NBI) in tokamaks
used to compute power deposition, driven current, momentum transfer, fueling, and other profiles in tokamak plas
to NBI. NUBEAM computes the time-dependent deposition and slowing down of the fast ions produced by NBI, taking in
consideration beam geometry and composition, ion-neutral interactions (atomic physics), anomalous diffusion of fast ions,
effects of large scale instabilities, the effect of magnetic ripple, and finite Larmorradius effects. The NUBEAM module can
also treat fusion product ions that contribute to alpha heating and ash accumulation, whether or not NBI is prese
physical phenomena are important in simulations of present day tokamaks and projections to future devices such as
NUBEAM module was extracted from the TRANSP integrated modeling code, using standards of the National Transp
Collaboration (NTCC), and was submitted to the NTCC module library (http://w3.pppl.gov/NTCC). This paper describes th
physical processes computed in the NUBEAM module, together with a summary of the numerical techniques that are u
structure of the NUBEAM module is described, including its dependence on other NTCC library modules. Finally, a des
of the procedure for setting up input data for the NUBEAM module and making use of the output isoutlined.
 2004 Elsevier B.V. All rights reserved.

PACS:52.40.Mj; 52.50.Gj; 52.65.Cc; 52.65.Pp

Keywords:Neutral Beam Injection; NBI; Tokamak; Heating; Monte Carlo

1. Introduction

The National Transport Code Collaboration (NTCC) project [1,2] is developing a new approach to to
and stellarator transport codes. This approach facilitates code use by non-experts and eases the implementat
large multi-physics integrated models. A modular approachallows the development of plug-in modules for phys
and numerical packages, to have steerable applications, and to access experimental data from local files or ove

✩ Supported by U.S. DOE contracts DE-AC02-76CH03073 and DE-FG02-92-ER-5414.
* Corresponding author.

E-mail address:pankin@haven.adnc.net (A. Pankin).
0010-4655/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2003.11.002

http://www.elsevier.com/locate/cpc
http://w3.pppl.gov/NTCC

158 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

ct
ired
cription

major
m at the
okamak

pes
nge and
tic

e
d neutral
fficiency

te neutral
sited
on of the
n and hit
reater or
locity
. Ions
its

to
the
n of the

ed
mmunity
nte

wo-
unts
of neutral
ks and is

ent
e JET

ral part

library
reflect

le

ormous
d error-

re than
UBEAM
output.
the Internet through a uniform interface, while still reusing legacy Fortran code internally. The NTCC proje
established module library standards in order to promote sharing and community ownership of modules requ
for predictive integrated modeling. An essential element of predictive integrated modeling involves a des
of the heating mechanisms that input energy into the plasma.

Neutral beam injection (NBI) heating, ohmic heating and heating by high-frequency waves are the
heating methods used in the modern magnetic fusion experiments. NBI is the major heating mechanis
Joint European Torus (JET), the largest tokamak device in the world, as well as at many other important t
fusion experiments.

The basic concept of NBI heating is straightforward. Injected energetic neutral particles (usually isoto
of Hydrogen or Helium) are captured in the target plasma by atomic physics processes—charge excha
ionization. This leads to the creation of an energetic ion population, which is confined in the tokamak’s magne
field and subsequently transfersits energy to the bulk target plasma through Coulomb collisions [3–5].

Neutral beams are created by passing an ion beam through a neutralizer chamber; the resulting neutral atoms ar
injected across the strong confining magnetic field into the target plasma. Conventional positive ion-base
beams have particles whose energies are limited by the fall-off of charge exchange neutralizer chamber e
to about 100 KeV. Negative ion-based neutral beams, which use an electron stripping neutralizer, can crea
beams of significantly higher energy, as high as several MeV. In either case, the injected neutral atoms are depo
as ions in the target plasma through impact ionizations and charge exchange processes. A large fracti
resulting fast ions become trapped in the confinement region while the remainder leave the plasma regio
the wall or the limiter. Depending on beam geometry and point of capture, the deposited fast ions carry a g
lesser portion of their velocity parallel or anti-parallel to the magnetic field. Those particles with sufficient ve
along the magnetic field lines follow “passing orbits” and travel roughly parallel to the magnetic field lines
with insufficient parallel velocity are mirror-trapped in the tokamak’s nonuniform magnetic field and their orb
follow a characteristic banana shapedtrajectory. All confined fast ions transfer their energy and momentum
thermal electrons and ions through collisions and, eventually, they become thermalized. A schematic view of
NBI system based on the negative ion source for the JT-60U tokamak is given in Fig. 1 [6]. The calculatio
complete dynamics of NBI heating requires a comprehensive computer code.

The TRANSP code [7–10] is a PrincetonPlasma Physics Laboratory (PPPL) transport code that has continu
to develop and advance since the early 1970s. TRANSP is one of the primary codes used in the fusion co
for time dependent analysis of tokamak experimental data. An essential element in the TRANSP code is the Mo
Carlo package for NBI physics. The NBI treatment includes the physics of neutral beam deposition, fast ion t
dimensional orbiting, power deposition, beam driven current and momentum transfer. The NBI treatment acco
for particle collisions, charge exchange loss and recapture, and transport of beam particles. The treatment
beam injection in the TRANSP code has been tested using experimental data from numerous tokama
widely acknowledged to be very accurate [10,11]. For example, Fig. 2 shows the match between measurem
and TRANSP simulation for collimated profile measurements of Deuterium–Tritium neutron emission in th
tokamak. However, the NBI coding, which was originally written in Fortran-77, was developed as an integ
of the TRANSP code and could not be transferred easily for use by other modeling codes.

In order to make the TRANSP NBI package available to the wider fusion community, the NTCC module
standards were employed in extracting the NBI coding from the TRANSP code. The NTCC standards
general tendencies in modern computational physics that are focused onportability issues. The new NBI modu
that has been developed, called NUBEAM, has been submitted to the NTCC module library.

The original TRANSP Monte Carlo fast ion code was coupled to the rest of the TRANSP code through en
shared Fortran “common” blocks, as is typical for older Fortran codes. This is an inherently non-modular an
prone communications method, but early versions of Fortran offered few practical alternatives.

Static analysis of the TRANSP code before extraction revealed that there were a total number of mo
6000 TRANSP common block scalar and array variables, and 1117 of these variables were used by the N
package. Approximately 370 variables were input, 365 were output, and 55 variables were both input and

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 159

11].

ANSP
xternal
d data
s, with

cript
Fig. 1. Schematic view of the NBI system for the JT-60U tokamak described in Ref. [6].

Fig. 2. Measurement and TRANSP simulation of collimated profile of Deuterium–Tritium neutron emission on JET discharge 42982 Ref. [

The remaining 327 variables were found to be internal to NUBEAM and not needed by the rest of the TR
code. The number of Fortran subroutines in NUBEAM was more than 250. The physical meaning of all the e
variables has been analyzed and eachvariable has been assigned to one of a number of Fortran-90 compoun
structures. The NUBEAM code’s internal communications were rebuilt around a set of Fortran-90 module
all external communications handled through the exchange of instances of compound data types. A Python s

160 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

re
ANSP
g
SP

n

BEAM
ure
CC
output.

library

s in an
ion as a

physics
ance or
tical
nuum
nly. The
al
urce

n

. After
of fast
radius.
le
ies
f nuclear
The
is given

basic
xisting ele-
ode are

t
ion,
physics
code generator was developed to help with the development of the interface, greatly simplifying the procedu
for making modifications. NUBEAM’s internal spatial grid was made independent of that of the main TR
code, and the XPLASMA NTCC module was invoked to handle the resulting interpolations needed for passin
profile information between the disparate grids. Finally, external dependencies that existed in the original TRAN
implementation of NUBEAM were either included in the NUBEAM module or replaced with modules available i
the NTCC module library. The structure of the resulting NUBEAM module is described in this paper.

This paper is organized in the following manner. In Section 2, the underlying physics used in the NU
module is described. In particular, beam deposition and fastion orbiting are emphasized. In Section 3, the proced
for initializing the NUBEAM module is described and some necessary information is included about other NT
modules that are used in the NUBEAM module. Section 4 contains a description of the NUBEAM module
Conclusions are presented in Section 5.

The NUBEAM source code and associated modules are available for download at the NTCC modules
website,http://w3.pppl.gov/NTCC.

2. NUBEAM module underlying physics

The NUBEAM module contains a Monte Carlo package for time dependent modeling of fast ion specie
axisymmetric tokamak. This Monte Carlo package represents the fast ion slowing down distribution funct
discreet set ofN weighted model ions selected byrandom processes using probabilities dictated by the underlying
physics. An advantage of the Monte Carlo method is that the representation of “smoothly varying” complex
is relatively straight-forward. A disadvantage lies in the computational cost of reducing the statistical vari
“noise” in the model results. Generally,N2 model ions need to be followed in order to reduce the statis
variance by a factor ofN . Such cost considerations make it impractical to model the entire thermal conti
by such methods. Consequently, the NUBEAM module uses the Monte Carlo method for the fast ions o
NUBEAM module stops following ions that slow down below(3/2)Ti , whereTi is the temperature of the therm
ions. These ions are then considered as “thermalized” ions and are described in terms of a thermalization so
function provided as an output of the NUBEAM module.

The NUBEAM module takes into accountmultiple beamlines, all beamline geometries, and beam compositio
by isotope and energy fraction. Neutral beam stopping atomic physics, including collisions with partially slowed
down fast ion species, are taken into account, with an option for a neutral beam excitation correction
deposition of fast ions in the plasma, the modeling of the slowing down includes anomalous diffusion
ions, the effects of large scale instabilities, the effects of magnetic ripple, and the effects of finite Larmor
The modeling also includes charge exchange loss and recapture of slowing down fast ions. The NUBEAM modu
computes the trajectories of neutral atoms and fast ion orbits. The module accounts for multiple fast ion spec
that can be present, either due to beam injection of energetic neutral particles or as a result of the product o
fusion reactions. The 2-D beam–beam, beam–target, and thermonuclear reaction rate profiles are computed.
basic elements are described in this section. A complete listing of the elements of the NUBEAM physics
in Appendix A.

The original NUBEAM library, developed for the TRANSP code, is described in Ref. [12]. While the
ideas and methods used in the module remain the same, many new elements have been added and e
ments improved during the past two decades. The major new and improved elements of the NUBEAM c
described below:

(1) Angular momentum balance and the effects of target plasma rotation—Toroidal rotation of the thermal targe
plasma can effect the plasma frame energy of newly injected beam particles, thus affecting their deposit
slowing down, and beam–target fusion rates. Angular momentum transport is also an important plasma

http://w3.pppl.gov/NTCC

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 161

entum

s
e ion

le to the
city
,

ic the

from
ics
le
f

e
nt for

re

scribed

ed
ng
e

m as
he beam;
ach
y
the beam
e to
ture; and
gineering
re

tral
ydrogenic
ciency.
. The ions
lecular
has
ut
research topic; the coupling of the NUBEAM model’s angular momentum source terms to angular mom
transport equations is described in detail in Ref. [13].

(2) Generalized, time varying axisymmetric numerical MHD equilibrium and fields—Slowing down beam ion
carried from a prior NUBEAM timestep re-enter orbiting in a changed plasma field configuration. Th
guiding center positions are reconstructed on the same toroidal flux surface as close as possib
guiding center’s final[R,Z] position in the prior NUBEAM timestep. Then, the guiding center’s velo
vector is reconstituted by asserting conservation of magnetic moment,v2⊥/B, and canonical momentum
Pφ = −mbRvφ − qbΨ/c, wheremb andqb is the mass and charge of particle speciesb, andΨ is the poloidal
flux. This leads to adjustments of the ion’s kinetic energy and momentum, usually small, which mim
effects of adiabatic magnetic (de)compression.

(3) Finite Larmor radius(FLR) corrections—Deposition, charge-exchange, and recapture involve FLR steps
an actual particle position to a guiding center, and back again. Also, for each evaluation of the atomic phys
and collision operators on slowing down ions, as well as beam–target fusion rates, a random gyrophase ang
is taken to determine the direction of the Larmor displacement from the ion guiding center to the point o
interaction with the target thermal plasma.

(4) Fusion product species, with simultaneous treatment of multiple fast species—Self-consistent treatment of th
fusion product ions allows for the simulation of alpha particle effects, which can be potentially importa
‘next-step’ tokamaks, such as ITER. The resulting fast alpha particle profiles from the NUBEAM module we
recently used as input to codes that calculate the effects of the toroidal Alfvéneigenmode instability, MHD
stability and micro-turbulence [14].

(5) Anomalous diffusion, sawtooth mixing, and toroidal field ripple transport models—The modeling of these
physical phenomena have also been improved.

Particular features of the physics included in the NUBEAM module, with the emphasis on aspects not de
elsewhere, and in particular not described in reference [12], are summarized in the subsections below.

2.1. Beamline geometry

All of the parts of a neutral beam injector that are located outside of the tokamak (or magnetically confin
plasma device) vacuum vessel are referred to as a “neutralbeamline”. A neutral beamline consists of the followi
parts: a plasma discharge that provides a source of ions; a series of electrically charged grids that accelerate th
ions and focus them into a beam; a large neutralization chamber designed to convert as much of the ion bea
possible into a neutral beam; strong magnets and a beam dump to remove any fast ions that remain in t
and finally, valves and a flange for attaching the beam line to the vacuum vessel. In the NUBEAM module, e
beamline is represented by a probability weighted randomlychosen collection of neutral tracks characterized b
parameters that are input to the NUBEAM module. These input parameters include the tangency radius of
center line relative to the axis of symmetry of the tokamak; the height and angle of the beam center line relativ
the midplane of the tokamak; the size and shape of the ion source grid, the height and width of the aper
the vertical and horizontal divergence and focal length of the beam. These parameters constitute an “en
description” which must be provided separately for each beamline on a tokamak experiment. These parameters a
important and should be accurately specified.

The formation of each beam starts withthe extraction of a beam from the ion source [15]. Most of the neu
beam injection systems use positive ion sources. Since the cross-section for charge exchange of positive h
ions is small for energies larger than 100 keV/amu, the energy of the ion is limited by the neutralization effi
The energy of beam species can be increased to more than 1000 keV/amu by using negative ion sources
extracted from the plasma source consist of atomic ions mixed together with diatomic and triatomic mo
ions. After these ions are accelerated to the uniform (full)energy, each nucleus in each diatomic molecular ion
half of the full energy and each nucleus in each triatomic molecular ion has one third of the full energy. The inp

162 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

ns,
the

s the fast
ribed

eveloped
ule

Carlo
sembles
ted
wn
al

hout the

BEAM
d
sma

nergy
”
by the

retain,

match

ld ions. If

hat
lation
parameters for each beamlet in the NUBEAM module includethe magnitude of the full energy of the beam io
the fractions of current (i.e., the number of ions per second) in the full, half, and third energy components of
beamlet, and the power injected through the vacuum wall of the tokamak as a function of time.

The other components of the NUBEAM module are used to compute the physical processes that occur a
neutrals pass through and interact with the magnetically confined plasma. These physical processes are desc
in the next four sections.

2.2. Beam deposition

Techniques, such as the Monte Carlo method [16] or the pencil-beamlet method [17,18], have been d
for the calculation of beam deposition profiles within the magnetically confined plasma. The NUBEAM mod
uses the Monte Carlo method. While the pencil beamlet method is computationally faster, the Monte
method provides a more detailed treatment of the physics. “Monte Carlo” particles that represent en
of physical particles with similar velocities are introduced [12]. The number of physical particles represen
by each model particle is denoted by its “weight”. Experience using the module within TRANSP has sho
that NUBEAM will calculate reasonably well behaved particle and energy source profiles if a statistic
ensemble of a few thousand weighted Monte Carlo particles per fast ion species is maintained throug
simulation.

The process of maintaining a fixed number of Monte Carlo particles per fast ion species is known in NU
as “constant census”, which works as follows. The physical quantities,Ninj , the physical number of newly injecte
particles during timestep[t, t +�t], andNold, the physical number of unthermalized ions circulating in the pla
at timet , are defined from the beam input data and the results of the simulation up to the current time:

(1)Ninj =
t+�t∫
t

[
Ib

(
E0, t̂

) + Ib

(
E0/2, t̂

) + Ib

(
E0/3, t̂

)]
dt̂ and Nold =

∫
V

nb(ρ, t)dV,

where�t is the timestep,Ib(E, t) is the input neutral beam current (particles per second) as a function of e
E and timet , andE0 is the full energy of a particle in the beam. The numerical control,Ntot, the “constant census
number of Monte Carlo particles to maintain per fast ion species (control input to NUBEAM), is provided
user. Then, the following target Monte Carlo census numbers are defined:

(2)N ∗
inj =

NtotNinj

Ninj + Nold

and

(3)N ∗
old = NtotNold

Ninj + Nold
,

the number of new Monte Carlo particles to inject, and the number of old Monte Carlo particles to
respectively. Due to time variation of input power andthe time variability of lossprocesses, the quantityNold,
the actual number of unthermalized Monte Carlo ions stored from the previous timestep, will not precisely
N ∗

old. Therefore, the quantity

(4)Nadjust=N ∗
old −Nold

is computed, representing the necessary adjustment to the Monte Carlo ensemble representing the o
|Nadjust| exceeds a certain threshold (N ∗

inj/5), then, Russian Roulette or Splitting are used to subtract or addNadjust
particles to the Monte Carlo ensemble representing the surviving population, with adjustment of weight so tNold
is conserved, and thenN ∗

inj new particles are deposited. If the threshold is not exceeded, the surviving popu

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 163

after

ce goes
e
and/or

tent with
nt, their
eam

l to the
ited

ehavior.
al
ts for
senting
region,

If

number
hile
el results
)
conds,
mber of

egion

am

tion

r
ve

the

s of
is not adjusted, andNinj = Ntot − Nold new particles are deposited. In either case, the number of particles
deposition is the constant censusNtot.

The only time that the Monte Carlo “constant census” is not maintained, is when the new particle sour
to zero—for example, after the shut-down of neutral beam heating late in a discharge. During this end phase of th
simulation, the Monte Carlo population is allowed to decline at the natural rate dictated by thermalization
other loss processes, untilNold reaches zero, signaling the end of the simulation.

New beam ions are injected into the simulation with energies assigned by a random process consis
the measured beam voltage and full, half, and one-third energy fractions. If multiple beams are prese
representation in the Monte Carlo deposition process is proportional to the measured total power on each b
line.

In NUBEAM, Ntot for beam ions is denoted asnptcls; Ntot for fusion product ions is denoted asnptclf;
these are set by user input. The amount of computer time used by NUBEAM is very nearly proportiona
number of Monte Carlo model ionsNtot used. Normally, NUBEAM assigns equal weight to each newly depos
Monte Carlo particle in each timestep. However, situations can arise where it is desirable to modify this b
For example, in simulations with high beam ion density fractionnb/ne, a Monte Carlo fluctuation in the centr
density might cause the unphysical resultnb/ne > 1. Since the central radial zones represent smaller targe
Monte Carlo orbit trajectories, it could be desirable to increase the number of Monte Carlo particles repre
nb in the core region, at the expense of the number of particles representing the fast ions in the edge
without modifying the constant censusNtot. The NUBEAM controlwghta allows this adjustment to be made.
wghta=1 (the default) is set, there is no radial adjustment of weight. As the value ofwghta is increased (to a
maximum ofn-zones, the user-selected number of radial bins in the Monte Carlo model), an ever larger
of Monte Carlo particles each of reduced weight are used to represent the population in the central region, w
corresponding fewer particles of increased weight are used for the edge region. Statistical variance in mod
are accordingly reduced (increased) depending on their relative dependence of model populations in the core (edge
regions. The effects ofwghta adjustment on a test case, which is based on a DIII-D discharge at 1.95 se
is shown in Table 1. The table shows the average values and root-mean-square (rms) variations of nu
physical,N and Monte Carlo,N fast ions with orbit averaged flux radial coordinate,ρ̂, in the intervals[0,0.1] and
[0.75,1], the central Deuterium beam ion density, and the beam electron heating, integrated over the edge r
0.75� ρ̂ � 1.

Evaluation of the beam deposition takes into account the expected full range of atomic processes affecting be
stopping in a hot target plasma. For a beam neutral that has atomic numberA0, energyE0, and velocity�v0, the

Table 1
The effects ofwghta adjustment

wghta=1 wghta=20

average value rms deviation average value rms devia

N |ρ̂�0.1 111 9% 251 5%
N |ρ̂�0.1 1.3× 1018 9% 1.4× 1018 6%
N |ρ̂�0.75 180 9% 93 11%
N |ρ̂�0.75 2.2× 1018 8% 2.3× 1018 11%
nb(0) (cm−3) 6.4× 1012 5% 6.5× 1012 4%∫
V (ρ̂�0.75) Pbe(ρ̂)dV (W) 1.9× 105 5% 1.9× 105 8%

Data based on run to equilibrium against a fixed target plasma (ne(0) = 6.5 × 1013 cm−3, Ti(0) = 8 keV,Te(0) = 4 keV, total injected powe
is 9.2 MW, full energy of injected Deuterium neutral beam atoms is 80 keV). 4000 Monte Carlo ions were used; the vast majority ha
0.1 < ρ̂ < 0.75. After the beam ion distribution equilibrated, the run was extended for 15 0.01 second timesteps. The table values show
average value and rms variation of the indicated quantities from these 15 timesteps. The quantitiesN andN are measured in each NUBEAM
timestep after deposition, but before orbiting. The physical quantitiesnb(0) and thePbe integrated in the edge region are the results of sum
all particle orbit trajectories through the indicated regions over the duration of the timestep.

164 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

le
l

d tables

ate
es

ure
al

ard
in the
ith the
ted in a

or
e average

tion
the
n, which
here the

. For
lated
expectation value of the flight time is

(5)τfl =
[∑

j

nj 〈σj vrel〉
]−1

.

The summation is performed over all thej beam stopping reactions;nj is the density of the charged partic
population driving the reaction;σj is the cross-section of the reaction;vrel = |�vi − �v0|; �v0 is the beam neutra
particle velocity;�vi is the charged particle velocity; and

(6)〈σj vrel〉 >=
∫

�vi
d�vi σj (vrel)vrelf (�vi)∫

�vi
d�vi f (�vi)

yields the appropriate target species distribution averaged reaction rate coefficient for thej th stopping reaction.
The stopping reactions included in the model are:

(1) electron impact ionization,
(2) thermal ion charge-exchange,
(3) thermal ion impact ionization,
(4) high-Z thermal ion stopping (impact ionization and non-neutralizing charge exchange),
(5) charge exchange with slowing down fast ions,
(6) impact ionization on slowing down fast ions.

Electron impact ionization is approximated using the Maxwellian averaged rate coefficients from standar
(p. 27 in Ref. [19]), using the adjusted electron temperature

(7)T ∗
e = Te + 2/3(me/mp)(E0/A0).

The required electron impact ionization data tables are supplied by the NTCC PREACT module.
For the thermal ion interactions (Hydrogen–Hydrogen, Hydrogen–Helium, and Helium–Helium), ground-st

charge exchange cross-sections are used from the ORNL “red book” [20]. The beam–target Maxwellian averag
are pretabulated on a grid to represent the two-dimensional functions〈σj vrel〉(E0/A0, Tj /Aj) by fast piecewise
bilinear interpolation, again using the NTCC PREACT module. Here,Tj andAj are the target species temperat
and atomic number, respectively, and the neutral energyE0 is taken in the reference frame of the flowing therm
plasma, for which NUBEAM allows a toroidal angular velocity to be specified.

For the impurities, approximate expressions for〈σj vrel〉 are taken for Carbon and Oxygen from the stand
ORNL “red book” [21], and a Z-scaling is applied for other impurity species; this data is also available
NTCC PREACT module. The impurity stopping data has known deficiencies [22], and a collaboration w
Oak Ridge atomic data center is under way to upgrade the available cross sections, which will be reflec
future version of PREACT.

For the interactions with slowing down fast ion species, an explicit Monte Carlo integral of〈σj vrel〉 is calculated
during Monte Carlo orbiting, and is retained from the preceding timestep of the NUBEAM calculation f
subsequent use by the deposition model. The deposition model is used to compute the representativ
velocity vector �v0 in each zone on a two-dimensional spatial grid, separately for theingoing and outgoing
trajectories of each energy component of each beamline. Each such portion of the injected beam neutral popula
is treated as mono-energetic, for which a separate〈σj vrel〉 Monte Carlo sum is evaluated. These sums yield
appropriate averaged rate coefficients for “beam–beam” stopping by charge exchange and impact ionizatio
are important terms affecting deposition in many beam heated tokamak experiments at lower densities, w
beam ion density is 10% or more of the electron density.

The average flight timeτfl for a beam neutral is a function of the neutral’s position in the target plasma
reasons of efficiency, all rate coefficients for thermalplasma and beam–beam stopping reactions are pretabu

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 165

y by the

o

om
tistical
ns of

ground
lti-step
, and a
state.

e source
r thermal
d 2-D
vide data

ious
f the fast
ith
etic
gorithm
n
d Monte
f new

d
ft orbit
ethod was
etry and

lly
for all neutral energies at each plasmazone. The NUBEAM’s Fortran-90 module,nbatom_mod, collects these
one-dimensional lookup tables, which are faster to use than the two-dimensional tables provided directl
general purpose atomic physics NTCC PREACT module.

For any given beam neutral trajectory with velocityv0, the probability of “shine-through” loss is

(8)Pshine= exp

(
−

∫
L

dl/v0

τfl

)
,

where the integration is performed over the entire beam pathL, while the probability of the neutral surviving t
distanceL along its flight path is

(9)P(L) = exp

(
−

L∫
0

dl/v0

τfl

)
.

In order to generate the initial condition for a Monte Carloion from a sample beam neutral trajectory, a rand
choice of the deposition point is taken from a perturbed probability distribution, which incorporates a sta
adjustment variable,wghta, allowing the model to generate, if desired, a greater number of Monte Carlo io
reduced weight for improved statistics in the core region at the expense of the edge.

It should be noted that the atomic physics data provided by the NTCC PREACT module supports only a
state model for deposition. In high density target plasmas, multi-step ionization can be significant. Mu
ionization occurs when an initial collision puts the neutral beam atom’s electron into an excited state
subsequent collision completely removes the electron before it has a chance to decay back to the ground
NUBEAM supports an excited states correction [19].

The beam neutrals that are involved in ionization and charge exchange collisions determine the particl
rates of ions, electrons and thermal neutral atoms, and they contribute to charge exchange loss rates fo
ions. These source/sink profiles areaccumulated both as flux surface averages and as poloidally resolve
profiles, available as code output, which can be used as input for transport equations and which can pro
for a thermal neutral gas transport model.

In the case of deposition of fusion product ions, beam–beam and beam–target fusion rates from the prev
timestep are added to thermonuclear rates from the current timestep, to determine the spatial distribution o
ion source. In a simplification of the physics, the rest frameof all fusion reactions is assumed to be coincident w
the rotating thermal plasma reference frame, so that thefusion product ion source is isotropic and mono-energ
in the plasma frame (e.g., 3.5 MeV for DT alphas). As with neutral beam deposition, a “constant census” al
is used: a population ofnptclf Monte Carlo model ions of roughly equal weight is maintained for each fusio
product species. Splitting or Russian Roulette are used as necessary so that the number of newly deposite
Carlo model ions relative to the number continuing from earlier timesteps will match the physical ratio o
fusion product ions deposited relative to the total number of slowing down fusion product ions. Thewghta profile
statistics control for beam ions is not available for fusion product ions.

2.3. Fast ion orbits

The Monte Carlo initial conditions foreach orbiting ion follow from a finite Larmor radius step that is displace
from the ion’s deposition point. The orbits of beam ions are advanced by solving the guiding center dri
equations using standard techniques [23]. For reasons of numerical performance and convenience, the m
generalized to allow the use of magnetic coordinates, in which the calling code provides the plasma geom
fields; a numerical Jacobian,J , is generated, rather than requiring a coordinate system in whichJ is proportional
to 1/B2. The drift orbit equations are also generalized to incorporate a radial electrostatic field, which is genera
present in the case of toroidally rotating plasmas.

166 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

ing time
rize the

oroidal
lowing
ues, and
d in

rget
up tables
tment of

angular
species.

o
e
r
used;

For the
For
rder
y is

nsional
s also
mber
ally
ion
omputer
er noisy

form
ns in a
ides the

xchange
the next
thermal
mal

in the
ry
e).
al
The effects of drag, energy diffusion, and pitch angle scattering are taken into account using alternat
steps in the drift equations with a “collision operator” based on Fokker-Plank coefficients that characte
relevant rates [12,24]. A toroidal electric field imparts a modest acceleration to the orbiting ions.

The collision operator is evaluated in the frame of reference of the toroidally rotating plasma. Strong t
rotation can significantly affect the plasma frame deposition energy of beam particles, affecting their s
down times and the splitting of beam heating between thermal ions and electrons. Heating profiles, torq
thermalization sources (particles, momentum, energy), as well as beam–target fusion rates are also evaluate
the collision operator. The beam–target fusion rates〈σvrel〉 are taken from the Maxwellian averaged beam-ta
rate tables in the NTCC PREACT module, based on standard fusion cross-sections [25]. The use of look
of Maxwellian averaged beam–target fusion rate coefficients reflects the same method applied in the trea
beam-target atomic physics for neutral beam deposition.

During orbiting, Monte Carlo sums are also used to calculate the fast ion density, average toroidal
velocity, and average energy densities parallel to and perpendicular to the magnetic field, for each fast ion
In fact, an entire 4-dimensional phase space fast ion distributionf (E,v‖/v,ρ, θ) is calculated by Monte Carl
summation. This fast ion distribution function uses a spatial(ρ, θ) grid, described further in Section 3.2. Th
spatial grid, representing magnetic coordinates, has an evenly spaced set ofρ zone “rows”, with a variable numbe
of θ zones per row: fewerθ zones near the axis, more toward the edge. Typically, 10 or 20 zone rows are
enoughθ zones are used to give similar spatial resolution in both the radial and the poloidal directions.
energy grid, the default numbers for pitch anglev‖/v and energyE grid zones are 50 and 100 correspondingly.
beam ions, the maximum energy for the energy grid is selected to be larger than beam injection energies in o
to allow energy diffusion and is typically in the range120–160 keV. For fusion products, the maximum energ
set as follows:

– fusion Tritons: 1.25 MeV
– fusion He3: 1.00 MeV
– fusion Alphas: 5.00 MeV

which are safely above the birth energies for common plasma fusion reactions. The spatially two-dime
distribution functionf (E,v‖/v,ρ, θ) is used to compute the fusion reaction rate between fast ions and i
retained for simulations of diagnostics based on chord integrals, such as charge exchange flux spectra. The nu
of Monte Carlo particles necessary to produce reasonably smooth fast ion densities and heating profiles, is gener
not sufficient to produce a locally well-behaved Monte Carlosummed fast ion distribution function. Since reduct
in statistical variance scales only as the square root of the number of Monte Carlo particles (and hence c
time) used, it is expensive to reduce the local variance. Nevertheless, chordal and volume convolutions ov
Monte Carlo distribution functions have been shown to work well.

The accumulation of Monte Carlo fast ion distribution functions during orbiting allows NUBEAM to per
the retrospective evaluation of the fusion reaction between fast ions, by convolving the distribution functio
Monte Carlo integral. Based on the standard fusion cross-sections [25], the NTCC PREACT module prov
necessary gyro-averaged fusion rate coefficients〈σvrel〉 for this calculation.

During the slowing down of fast ions, an atomic physics operator is evaluated to model fast ion charge e
losses. The atomic physics operator is also used to compute fast-ion beam stopping coefficients for
deposition timestep, as well as profiles of charge exchange and impact ionization rate coefficients for
energy background neutrals. The latter profiles are important because they play a dominant role in core ther
neutral gas transport.

Direct integration of the ion drift equation contributes substantially to the computational burden
NUBEAM module because the characteristic times of the fast ion orbiting and of ion thermalization are ve
different (the ion orbit bounce time is usually many orders of magnitude shorter than the ion slowing down tim
Consequently, a number of acceleration techniques are used in the NUBEAM module. In particular, the numeric

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 167

f
r
ics
times are
ical

p
so that
to three

hout

. The
has

asma
s with

field
passing
update
d bounce
se

ated
o,
goosing

is

ic

a

nd
ns
control variables,fppcon andcxpcon, are introduced. The first variable,fppcon, indicates the number o
collision operator evaluations to perform per orbit half-bounce. The second variable,cxpcon, indicates the numbe
of atomic physics evaluations per orbit half-bounce. During the evaluation of the collision and atomic phys
operators, characteristic slowing down, pitch angle scattering, energy diffusion and charge exchange loss
estimated, based on an average over each orbit half-bounce.The ratio of the shortest of these characteristic phys
timescales to the orbit bounce time is compared to the numerical control variablegoocon, which specifies the
number of orbit bounces to evaluate per shortest characteristic competing timescale. A “numerical” orbit timeste
multiplier,goose, is set accordingly, to artificially accelerate the collision and charge exchange operators
onlygoocon orbits need be evaluated per selected characteristic physical timescale. This reduces, by two
orders of magnitude, the number of orbit timesteps thatare necessary to complete each model calculation, wit
significantly affecting the results.

The procedure for updatinggoose during the fast ion slowing down process has been generalized
traditional NUBEAM procedure measures orbit half bounces by successive midplane crossings. However, it
been recognized that there exist tokamak field equilibria which support classes of orbits that never reach the pl
midplane. For example, spherical tokamak equilibria can have off-midplane local field minima, in which ion
low parallel velocity can be trapped. Even in conventional aspect ratio tokamaks where each flux surface
minimum occurs at or near the outer flux surface midplane intercept, collisional orbits near the trapped
boundary can travel for long periods of time without a midplane crossing. Therefore, a “backup” goose
mechanism has been introduced in the code. This is based on a zero-banana-width estimate of expecte
time for trapped orbits, localized to each flux surface. If, at any time, an orbit’s actual travel time (since last goo
update) exceeds more than twice the zero-banana-width bounce time estimate, the ion’s goose factor is upd
immediately, without waiting for the next midplane crossing; the goose factor is also reduced by a factor of tw
to empirically compensate for the relative infrequency of updates of the goose factor, and, the midplane
controls (which require two successive crossings) are re-initialized.

The details are as follows. On each flux surface,ρ, Bmin andBmax are found. For a given trapped orbit on th
surface,Brefl, betweenBmin andBmax, is the “reflection point” wherev⊥ = v andv‖ = 0. A handful ofBrefl values
are chosen as a basis for numerical evaluation of the functionτb(ρ,Brefl) using the integral

(10)τb = 2

θ+(Brefl)∫
θ−(Brefl)

dθ
dlp

dθ

B

Bp

1

v‖

wherelp is the poloidal path length,B/Bp is the ratio of total magnetic field to poloidal component of magnet
field, andθ−(Brefl) andθ+(Brefl) are, respectively, theθ values nearest toθ(Bmin) satisfyingB(θ,ρ) = Brefl. These
values are located numerically with a root finder.

In the zero-banana-width approximation,v and magnetic momentv2⊥/B are constants of motion. For
collisionless orbit these considerations lead to

(11)v‖ = v

√
1− v2⊥

v2 = v

√
1− B

Brefl
.

This allows thev dependence to be factored out of the above integral, so that

(12)τb = 2
Lb

v
and Lb =

θ+(Brefl)∫
θ−(Brefl)

dθ
dlp

dθ

B

Bp

1√
(1− B/Brefl)

which only needs to be evaluated at a handful of representative values ofBrefl on each flux surface. The integra
is singular at the end points, but the singularity is integrable unless dB/dθ is zero at the end points, which happe

168 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

in

oids
seen
fast

ne

housand
ne field
er the

rror bars

ce
sed,
wever,
classically, e.g., atBrefl = Bmax, corresponding to the “usual” zero-banana-width trapped-passing boundary. But
the general case, for flux surfaces with multiple local field maxima, multiple non-integrableLb values can arise.

Two measures are taken to avoid the singularities. First, in the numerical evaluations ofLb integrals,
(1− B/Brefl) is replaced by max(10−8, (1− B/Brefl)). Second, the representativeBrefl values are chosen at

Brefl(1) = Bmax− δ(B),

Brefl(2 : 3) = Bmin + 0.75(Bmax− Bmin) ± δ(B),

Brefl(4 : 5) = Bmin + 0.50(Bmax− Bmin) ± δ(B),

(13)Brefl(6 : 7) = Bmin + 0.25(Bmax− Bmin) ± δ(B),

whereδ(B) = (Bmax − Bmin)/100. Then,Lb(Brefl(1)) is evaluated and assigned asL∗
b(Bmax); min(Lb(Brefl(2)),

Brefl(3)) is evaluated and assigned asL∗
b(Bmin + 0.75(Bmax − Bmin)), and similarly forL∗

b(Bmin + 0.50(Bmax−
Bmin)) andL∗

b(Bmin +0.25(Bmax−Bmin)). The choose of the minimum of the evaluation of a pair of values av
the singularity on any flux surface for whichB(θ) has only a small number of local maxima, i.e., all cases as
in practice. This procedure results in a handful of numerical integrations on each flux surface, which are very
to evaluate.

For use during orbiting,L∗
b is organized as a function of flux surface labelρ and dimensionless coordinatexB ,

defined by the relation

(14)Brefl = Bmin + xB(Bmax− Bmin).

During orbiting, the two quantities

�t(orbit) = [time since last goose evaluation]
and

(15)Bmax(orbit) = [maximumB seen by particle since last goose evaluation]
are tracked. Then, for a particle of velocityv on flux surfaceρ,

(16)xB = min

(
1,max

(
0.25,

Bmax(orbit) − Bmin(ρ)

Bmax(ρ) − Bmin(ρ)

))
and τb = 2

v
L∗

b(xB,ρ)

are computed at very low computational cost. The goose factor is updated without waiting for the next midpla
crossing, if the condition

(17)�t(orbit) > 2τb

is satisfied.
When tested on a conventional tokamak test case (a TFTR supershot), fewer than one orbit in a t

experienced goose updates is triggered by the alternative method. Even in NSTX cases with off-midpla
minima in the equilibrium, due to the beam injection geometry, Monte Carlo ion trajectories which trigg
backup goose update method are quite rare.

The overall computational overhead of supporting this alternate goose update method lies within the e
of CPU time measurement, in brief tests, and is believed to be less than 1%.

Hypothetically, in a simulation where neutrals are injecteddirectly into off-midplane trapped orbits, the absen
of the backup goose update method could leave large numbers of highly collisionless particles orbiting ungoo
resulting in a major loss of computational efficiency plus some accumulation of orbit integration error. Ho
such a case has not yet been observed in practice.

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 169

e
thin the
tion in

idal
are
ile

sev
sults of
fast ion
es
routine
so, the
t is
tinuous”

ns
ane.
e ion is

every

e

n of
uch as

malous
articles.

y. The
e of the
time,
2.4. Effects of sawtooth oscillations, fishbone instabilities, and magnetic ripple

Sawtooth oscillations [26], fishboneinstabilities [27–29], and magnetic ripple [30] cause perturbations of th
magnetic field and distortions of the fast ions paths, which result in either rearrangement of fast ions wi
plasma or ejection of the ions from the plasma region [30]. Magnetic ripple is the non-axisymmetric varia
the strength of magnetic field and the non-axisymmetricdisplacement of magnetic field lines around the toro
circumference of tokamak as a result of the discrete toroidal field coils. Fishbone and sawtooth oscillations
both large scale MHD instabilities in tokamak plasmas. Fishbone instabilities causes bursts of fast ion losses, wh
sawtooth oscillations generally mix fast ions within the central region of the plasma.

The NUBEAM module supports a method to model the effects of sawtooth oscillations based on the Kadomt
mixing model [31]. If the sawtooth flags are set, to indicate that a sawtooth crash may occur, the re
Kadomtsev mixing are precomputed and stored. This includes profiles of the “potential” post-sawtooth
density and energy content, which the calling code should interpolate to its own grid. If the calling code determin
that a sawtooth crash has indeed taken place prior to the next NUBEAM timestep, then, NUBEAM’s sub
sawnbi is called. This updates the internal state of NUBEAM to reflect the occurrence of the sawtooth. Al
calling code updates its own representations of the fast ion density and other profiles, using the data provided. I
recommended that NUBEAM timestep boundaries be synchronized (on a transport timescale) with “discon
events such as sawtooth crashes, as well as plasma fueling by neutral pellet injection.

The NUBEAM module calculates losses of fast ions dueto fishbone oscillations and magnetic ripple [32]. Io
are checked for possible loss due to interactions withfishbone oscillations when they cross the plasma midpl
If the time corresponds to a fishbone event, and if the ion parameters fall within the specified range, th
declared lost from the plasma.

A stochastic magnetic ripple loss criterion [33] is computed in the NUBEAM module for every ion at
timestep. The parameter that determineswhether or not a particle has been lost is

(18)δs = αanom

(
ε

Nπq

)3/2 1

ρg

(
dq

dψ
|∇ψ|

)−1

,

whereε = r/R is the inverse aspect ratio,N is the number of coils,q is the plasma safety factor, andρg is the
Larmor ion gyro radius. This criterion can be adjusted by a user-supplied anomaly factorαanom. The particle is
lost if the toroidal magnetic field rippleδ at the bounce point is greater thanδs . This model also calculates th
power loss, particle loss, and momentum loss caused by magnetic ripple, and the corresponding�J × �B torque and
rotational energy change of the plasma.

In practice, the ripple loss anomaly factorαanom has been found for select cases by timeslice compariso
TRANSP results with results from a more detailed and time consuming TF orbit ripple loss calculation, s
ORBIT [23]. This method has been used to study beam ion and alpha ion losses in TFTR [34].

2.5. Anomalous fast ion diffusion

The NUBEAM module has an option to calculate an anomalous fast ion diffusion operator. This ano
diffusion model can be applied to beam ions and fusion products separately, or to all the Monte Carlo p
The calling code sets the anomalous diffusivity, which can be a time varying radial profile.

The NUBEAM code allows fast ion anomalous diffusion to be specified as a function of the fast ion energ
method is to specify, via an input parameter list, a piecewise linear function giving the energy dependenc
fast ion anomalous diffusion coefficients. This function is independent of all other coordinates such as space,
and the species’ indices.

170 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

actual
rophase
n, and
n,

of
in
are then

ak
kamak

f

at

or
r

r
R
ot valid
c well

tic field
ular

,

2.6. Finite Larmor radius adjustment

NUBEAM’s guiding center drift orbit integrator computes the trajectory of fast ion guiding centers, but,
particle positions are separated from their guiding centers by a Larmor radius. By choosing a random gy
angle, NUBEAM’s Finite Larmor Radius (FLR) adjustment causes particle collisions, beam–target fusio
atomic physics reactions, and fast ion loss to the limiter or wall, all to be calculated out at the particle positio
rather than at the guiding center.

NUBEAM supports two FLR adjustment models. For a fast ion of atomic weightAb and numberZb, the
“traditional” model approximates the Larmor radius

(19)ρg = Abmpv⊥/ZbeBg

as independent of gyrophase angle, based on the magnetic fieldBg at the orbit guiding center. After selection
a random gyrophase angle, the particle displacement, normal to the guiding center field, is calculated directly
[R,Z] coordinates and mapped to back to flux coordinates by a fast bilinear map. Plasma parameters
found at the chosen particle position for the calculation of collision operator, charge exchange, etc.

While the traditional model is computationally efficient, and adequate for most conventional tokam
applications, use of a gyrophase-invariant Larmor radius is not sufficient in certain low field spherical to
configurations. Therefore, a “generalized” FLR model has been added to the code.

In general, the FLR effect introduces a displacement��x of each fast ion within the gyro plane

(20)��x = ρg

[
a(�eg cosα + �e⊥ sinα) + b �e‖

]
,

whereρg is the guiding center Larmor radius of the fast ion,�e‖ = �Bg/Bg is a unit vector defining the direction o
the magnetic field at the guiding center,�Bg is the magnetic field at the guiding center in contrast with�B
, which
is the magnetic field at the location of a fast ion (gyro point
), �eg is the unit vector normal to the flux surface
the guiding center,�e⊥ = �eg × �e‖, α is the gyro angle that defines a plane within which the gyro point
 is located,
anda andb are coefficients that describe the displacement caused by the change of magnetic field within a Larm
radius. If the change of magnetic field within a Larmor radius is small,δB/B 	 1, or in other words, the Larmo
radiusρg is much smaller than the characteristic scale length of the magnetic field gradientLB , ρg 	 LB , the
displacement from the guiding center is based on the magnitude and direction of the�Bg field at the guiding cente
and the coefficientsa andb go to 1 and 0 correspondingly. These settings are inherent to the traditional FL
model in the NUBEAM module and are used by default. These assumptions for the magnetic field are n
for discharges with highβ or low aspect ratio, where the magnetic field can be small inside the diamagneti
and orbit losses are overestimated [35]. The new FLR model uses the displacement from the guiding center, which
is based on the magnitude and direction of the magnetic field at the gyro point, instead of on the magne
at the guiding center. Then, the coefficientsa andb are to be found to satisfy the energy and canonical ang
momentum conservation conditions in the axisymmetric(R,Z) coordinate system:

(21)v2

 = vg

2 − 2qb

emb

(Φ
 − Φg),

(22)vϕ
 = Rg

R

vϕg + qb

mbR
c
(ψ
 − ψg),

where the indexesg and
 represent the gyro center and gyro point correspondingly,Rg,
 is the radial coordinate
ψg,
 is the poloidal flux,Φg,
 is the electrostatic potential,�vg,
 is the velocity of the particle, andvϕg =
(�vg · �e‖)Bϕg /Bg .

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 171

at

utation
nite

e
sed,
lution in
e
tions per
hod
that the
se

armor
ly
by

ion
on
point as
ent,

guiding

oduction,
st case
ond case
09070.
,
ary with
penalty in
nal

ossible
ed, is
Assuming that the displacement��x is orthogonal to the magnetic field�B
 at the gyro point, one can show th
the functionV (a, b) defined as

(23)V (a, b) ≡
∥∥∥∥ZbeB

mcv

(��x × �e‖)
∥∥∥∥2

+ 1

(ϕ̂
 · �e‖)2

(
vϕ

v

− (��x × �e‖) · ϕ̂

)2

,

is unity at the gyro point

(24)V (a, b) = 1.

The latter equation together with the orthogonality condition for the displacement��x
(25)X(a,b) ≡ (��x · �e‖) = 0

provide the complete set of equation for the coefficientsa andb that define the displacement��x in Eq. (20). Once
the displacement is calculated, theNUBEAM module checks whether or not the particle is lost to the limiter (leaves
the plasma).

A two-dimensional Newton iteration method is employed to solve Eqs. (24) and (25). This requires comp
of the Jacobian(∂(X,V)/∂(a, b)) within the iteration. A numerical computation of the Jacobian using central fi
differences is performed. The NTCC XPLASMA module is used for computing the�B, ψ andΦ functions, and
so the computational cost of computing the Jacobian using five points in the(a, b) plane is reduced due to th
vectorized nature of the XPLASMA module. As an alternative, a two-dimensional secant method can be u
which starts with a numerically computed Jacobian, and then the Jacobian is updated along with the so
subsequent iterations. The first iteration requires five points in the(a, b) plane but the following iterations requir
only a single point unless the iteration scheme needs to be restarted. There are fewer function evalua
iteration but, because the secant method converges more slowly, there are more iterations. The secant met
appears to have a slight benefit in computation time over the Newton method though it should be noted
first step, which is the same for both the Newton and secant methods, typically takes the starting point fairly clo
to the final solution. For both the Newton and secant methods, the iteration scheme is started at the (a = 1, b = 0)
point, which corresponds to the point on the gyro orbit returned by the older FLR model.

In both FLR models, the guiding center of a fast ion is found at deposition time by making a L
displacement based on the magnetic field at the point ofionization. The guiding center is then incremental
advanced for each ion. The tracking of the high energy, large gyro radii ions present in a spherical tokamak
means of their guiding centers has been shown to be valid by Mikkelsen et al. [35].

After advancement of the guiding center for an ion, a random gyro phase is chosen and the position of the
on the gyro orbit is computed from a Larmor displacement using the traditional FLR model or through the iterati
method of the new FLR model. The space and velocity distribution of the fast ions can be computed at this
a density in the guiding centers or a density of the ionson the gyros. Due to the random gyro phase displacem
the fast ion distribution on the gyro tends to have more Monte Carlo noise then the distribution at the
center.

Table 2 compares the total limiter and charge exchange power loss, beam heating power, neutron pr
and Monte Carlo CPU time for two NSTX cases computed with the traditional and new FLR models. The fir
corresponds to the NSTX discharge 109070, 0.4 s after beam turn on from current NSTX data. The sec
is based on profiles predicted for high beta plasma with a markedly different current profile than that of 1
The simulation of NSTX discharge109070 showslittle difference between the newand traditional FLR model
while the simulation of the high beta shot shows much smaller fast ion losses outside the plasma bound
a corresponding increase in beam heating and neutron production. Both cases indicate a severe runtime
this section of code when using the new FLR model due to the search scheme inherent in this model. The traditio
FLR model is therefore generally used for new runs while the new FLR model is used for checking for p
large Larmor radius effects. The inclusion of a full orbit code into NUBEAM, which can later be paralleliz
being investigated.

172 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

nal

ents of
found on
ebsite,
tures

te with
the

ta
BEAM
l. The
Table 2
Beam heating power, total limiter and charge exchange power loss,neutron production, and Monte Carlo CPU time with new and traditio
FLR models for two NSTX discharges

NSTX 109070 NSTX highβ

Traditional FLR New FLR Traditional FLR New FLR

Limiter and charge exchange loss [W] 5.2× 105 5.4× 105 3.5× 106 2.6× 106

Beam heating power [W] 2× 106 2× 106 5× 105 9× 105

Neutron production [1/s] 4.0× 1014 4.0× 1014 1× 1014 3× 1014

Monte Carlo CPU time [hours] 0.5 4.0 0.1 0.5

3. Using the NUBEAM module

3.1. Initialization of the NUBEAM module

Almost all of the NUBEAM input and output parameters are passed to the NUBEAM module as elem
Fortran-90 compound data types. More detailed up-to-date descriptions of these structures can also be
the Internet in the appendices of the NUBEAM User Guide on the NUBEAM webpage under the NTCC w
http://w3.pppl.gov/NTCC[2]. The input data structures are listed in Appendix B and the output data struc
are listed in Appendix C. The total collection of compounddata type definitions are contained in the Fortran-90
module namednbi_types.f90, which is imported into the user’s software by employing the statement

use nbi_types

The nbi_types module defines data types only—it does not contain any actual data. To communica
NUBEAM, the user’s code declares an instance of eachappropriate data type. When setting up input for
NUBEAM module, the following steps need to be implemented: An instance of typenbitype_sys, for example,
is created; the corresponding NUBEAM routinenbi_init_sys is called to set default values for the da
elements in this instance; the user’s routine can modify individual elements as desired; and then the NU
routinenbi_set_sys is called to pass the instance of the compound data type as input to the mode
following code example illustrates this process:

use nbi_types

type(nbitype_sys) :: zsys ! declaration of variable zsys for
! basic NUBEAM system inputs

call nbi_init_sys(zsys) ! load defaults in zsys

! user needs to set only those data elements for which non-default
! values are desired. For example:

zsys%runid = my_runid ! set RUNID string
zsys%nonlin = my_msg_lun ! set Fortran unit number for

! messages
zsys%nseed = my_seed ! set random number seed

call nbi_set_sys(zsys) ! system input parameters are passed
! to the NUBEAM module.

http://w3.pppl.gov/NTCC

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 173

nificant
without

ecisely,
’s
en,
modified
aintained
AM
put
ary

e gen-
o-date.

rofiles,
cted to
le is

i-
d
IT [36]
es. The

res
n of
x

ws
dge
idal

path
used to
ses the
odule

nested

ved by
built

y
er
ing a set
e

This method (the use of Fortran-90 compound data types for specification of inputs) has some sig
maintenance advantages. In particular, the NUBEAM developer can add new input options to the code
breaking existing user installations, provided intelligent default settings are specified.

There are some ordering and update restrictions on how inputs are presented to NUBEAM. More pr
certain array dimensions must be given first because theycontrol the dynamic allocation of arrays for NUBEAM
internal memory; an instance of the typenbitype_dims is used to set this array dimension information. Th
there are a set of inputs that can only be specified once at the beginning of a run, and cannot be
subsequently: geometries of individual beam-lines are an example of this class of inputs. Such inputs are m
in NUBEAM’s state file; if a code is restarted, the NUBEAM module will find them in the state file and NUBE
does not need to receive them a second time from the integrated modeling code. Finally, there are a set of in
parameters, such as the powers and voltages on each beamline, which are updatable and which are expected to v
in time.

Complete definitions of the compound data types used for input are found innbspec.dat, which is distributed
with the NUBEAM module and is described in Appendix D. This file, which serves as input to a Python cod
erator script that actually builds the NUBEAM interface layer, is therefore functionally guaranteed to be up-t

3.2. Use of the NTCC XPLASMA module

The NTCC XPLASMA module is a general tool for representing and sharing plasma geometry and p
and for interpolating the profiles between disparate grids. The XPLASMA module at present is restri
axisymmetric configurations. The way that the XPLASMA module is used within the NUBEAM modu
described in this subsection.

In setting up the call of the NUBEAM module in a new application, the plasma MHD equilibrium and var
ous plasma parameter profiles must be loaded into the XPLASMA module. The equilibrium can either be loade
directly via the appropriate XPLASMA calls, or it can be loaded from a standard data source such as EF
or from TRANSP MDSplus trees [37,38], which are available from various tokamak experimental databas
NTCC module I2MEX can be used to load XPLASMA with numerical axisymmetric MHD equilibria from var-
ious sources; the NTCC module TRXPLIB can load both equilibria and TRANSP profiles such as temperatu
and densities into the XPLASMA module. Equilibrium and plasma parameter profiles are defined as a functio
the standard flux surface label coordinateρ = √

Φ/Φ0, whereΦ is the toroidal flux enclosed within a given flu
surface andΦ0 is the toroidal flux within the outer plasma boundary. The flux surface coordinateρ is a dimen-
sionless variable ranging from 0 at the magnetic axisto 1 at the plasma boundary. In addition, XPLASMA allo
equilibria to be numerically extrapolated in order to provide a nested set of nominal flux surfaces beyond the e
of the plasma atρ = 1. These surfaces withρ > 1 are numerical surfaces only; the relation to the physical toro
flux does not apply (or only applies very roughly) beyondρ = 1.

The XPLASMA module allows the specification of an axisymmetric wall or limiter, which is a closed
encompassing a region that includes the entire cross-section of the core plasma. This limiter or wall is
define orbits that are lost to the plasma: a NUBEAM Monte Carlo ion is not considered lost, even if it cros
plasma boundary, unless it comes within a Larmor radius of a physical limiter. Therefore, the NUBEAM m
requires that XPLASMA be given a wall configuration, and that the equilibrium be extrapolated to give a
toroidal flux surface system large enough to fill the rectangle[Rmin,Rmax] by [Zmin,Zmax] defined by the minimum
and maximum major radius and elevation of the given wall configuration. The extrapolation can be achie
calling the XPLASMA routineeqm_brz after the wall coordinates have been loaded. If the equilibrium is
directly from EFIT results that already cover the exterior vacuum region, the extrapolation is not required.

In addition, XPLASMA supports the definition of an irregular 2-D grid, illustrated in Fig. 3, that is used b
various TRANSP models for fast ions. This grid consists of radial zones that are subdivided poloidally, with few
subdivisions near the center of the plasma and more subdivisions toward the edge of the plasma, yield
of subzones with roughly equal cross-sectional area. This 2-D grid is created by calling the XPLASMA routin

174 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

-
A
ed in the

p within
own

a
hich are
pleted.

clude

t
its own

ML file
nd

ion,

eight

lowing

”

Fig. 3. Irregular 2-D grid.

mcgrid_define. Within each radial zone, the poloidal zones are spaced equally in theθ dimension, which is
the poloidal angle coordinate implicitly defined by the supplied 2-D MHD equilibrium.

In general, XPLASMA allows for the definition of profiles in any of the formsf (ρ), g(ρ, θ), h(R,Z). As-
sociated with each such profile is a unique name and aunique integer “XPLASMA ID”, which is assigned au
tomatically by the XPLASMA module. NUBEAM acquires the input profiles it needs by receiving “XPLASM
ID” integers specified as members of a compound data type (Fortran-90 type) used for input, as describ
previous Section 3.1. Almost all NUBEAM profile inputs are of the formf (ρ), with ρ in the range[0,1]. Ex-
trapolations of profiles beyond the plasma boundary are not required. When NUBEAM sets up a timeste
its calculation, it uses its own XPLASMA calls to remap the profiles from the caller’s grid to NUBEAM’s
internal grid.

Similarly, on output, the NUBEAM defines a large setof XPLASMA profiles, which are each identified by
unique integer ID. These profiles are returned to the caller as members of compound data structures, w
fetched with calls to the appropriate data retrieval routines after the NUBEAM timestep calculation is com
The caller can then use XPLASMA interpolation routines to remap the data to the caller’s grid.

There is also a set of spatially 2-D data defined on the XPLASMA irregular 2-D grid. These profiles in
2-D neutral source and neutral sink data, and the full distribution functions for each fast ion species.

The NUBEAM input/output interfaces are written by using a Python code generator. The generator inpu
specification file is an ASCII file that is designed to be understandable by the user. It is a useful document in
right, as is described in the previous section and in Appendix D. The python generator also writes an HT
that fully describes the generated components of theNUBEAM input and output interfaces—both subroutines a
Fortran-90 compound data types. This webpage is posted with the NUBEAM module webpage as documentat
under the NTCC website [2].

The XPLASMA module is one of the eight NTCC nodules that are used by the NUBEAM module. All
NTCC modules are listed in Appendix E, with a brief description of each module.

3.3. Running the NUBEAM module in a transport code

A typical sequence of calls for the time-dependent use of NUBEAM fast ion simulations includes the fol
steps once the NUBEAM module is initialized with an initial set of control inputs and array dimensions:

(1) Initialize the XPLASMA MHD equilibrium and associated profiles;
(2) Update inputs to the NUBEAM module, such as the power injected with each beam; and “XPLASMA ID

integers for the plasma parameter profiles at the current timestep;

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 175

(call

data
erated

is given

ed by
a single
system
f TFTR
after the
(3) Have NUBEAM interpolate XPLASMA profiles to its internal grid with error checking of the profile data
NBI_INTERP_PROFILES);

(4) Initialize NUBEAM timestep and perform further error checks on the input data (call NBSTART);
(5) Compute beam and fusion product deposition (call DEPALL);
(6) Compute orbiting and slowing down (call ORBALL);
(7) Finish timestep (call NBFINISH). All output profile data are stored in the XPLASMA module. Scalar

and XPLASMA IDs can be fetched through compound data types using calls to NUBEAM’s gen
nbo_get_* routines;

(8) Get NUBEAM outputs.

An example of the Fortran-90 user code needed to advance the NUBEAM module through a timestep
below:

CALL <my_xplasma_setup> ! get XPLASMA MHD equilibrium and
! profiles ready

CALL <my_NUBEAM_setup> ! set/update inputs to NUBEAM: XPLASMA
! profile ids, power injected with each
! beam, etc.

CALL NBI_INTERP_PROFILES(ierr)
! interpolate XPLASMA profiles to NUBEAM
! internal grid. Check error code (0=OK).

! at this point all input data has been loaded into NUBEAM.

CALL NBSTART(ierr) ! NUBEAM call-- initialize timestep.
if(ierr.ne.0) then [... implement error handling ...]

CALL DEPALL(ierr) ! NUBEAM call-- beam/fusion product
! deposition

if(ierr.ne.0) then [... implement error handling ...]
CALL ORBALL(iorbtot, ierr)! NUBEAM call-- orbiting and slowing down

! integer, intent(out) :: iorbtot returns
! zero if there were no orbits to follow.

if(ierr.ne.0) then [... implement error handling ...]
CALL NBFINISH(ierr) ! NUBEAM call-- finish timestep.
if(ierr.ne.0) then [... implement error handling ...]

! at this point all output profile data are in XPLASMA. Scalar data
! and XPLASMA id’s can be fetched through compound data types using
! NUBEAM’s generated nbo_get_* calls.

CALL <my_output_extractor> ! get NUBEAM outputs.

The implementation of the NUBEAM module in the TRANSP code allows an estimate of time requir
the NUBEAM module for a typical run simulating a neutral beam heated tokamak plasma. For example,
processor computer time using an Intel Pentium IV 2 GHz chip running under Redhat Linux 7.2 operation
was used for a test run. Fig. 4 shows the CPU time distribution between different modules for a simulation o
discharge 37 065, which is used as a test case for the TRANSP code. The simulation is started at 3.0 sec

176 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

le and the
BEAM
BEAM

o typical
s. The
e

NSP
of the

lars or
in

energy
ally
on
own
Fig. 4. CPU time distribution.

discharge is initiated and the beam deposition begins at 3.5 s. Timesteps in the TRANSP code are adjustab
NUBEAM code is not called each timestep. Based on the experience gained from intensive use of the NU
package in the TRANSP code, it has been found that a sufficient time interval between calls to the NU
module is 0.01 s for most current tokamak discharges (the NUBEAM timestep should be short compared t
slowing down times of newly deposited fast ions). The value of time interval used in our simulation is 0.01
CPU time used by the NUBEAM moduletNUBEAM, the XPLASMA moduletXPLASMA, and the remainder of th
TRANSP codetTRANSP add up to the total CPU timetTOTAL:

tTOTAL = tNUBEAM + tXPLASMA + tTRANSP.

In this particular example, the NUBEAM module uses about two thirds of the total CPU time in a TRA
simulation. The average time used by the NUBEAM module per call is about 25 s during the NBI phase
discharge.

4. NUBEAM module output

The output from the NUBEAM module at a given timestep can be divided into three categories: sca
arrays of scalars; 1-D profilesf1(ρ); and 2-D profilesf2(ρ, θ) on the 2-D irregular grid that is described
Section 3.2.

In the first category, the variables contain 0-D information such as contributions to the global
balance, momentum balance, or particle balance for each individual fast ion species. These are typic
arrays of numbers dimensioned by the fast ion index array dimension. The 1-D profiles are defined
the NUBEAM internal grid but stored as XPLASMA objects, allowing interpolation to the caller’s
radial grid as a function ofρ. For each 1-D output profile, a unique integer XPLASMA ID code is
returned.

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 177

able

llowing
Output variables are organized into several blocks,each of which corresponds to a compound data type defin
in the caller’s code by the statement

use nbi_types

The caller’s code creates an instance of each output data type, such as

type (nbotype_power_balance) :: zpbal
type (nbotype_powers) :: zpowers

Then, after the beam code timestep has been completed, the caller code must issue a call, such as:

call nbo_get_power_balance(zpbal) ! getting scalar power balance from
! the NUBEAM code

after which individual elements can be extracted into the caller’s data structures. This is illustrated in the fo
example

do isi=1,nsfast ! loop over transport code’s fast specie list

itype=0 ! transp code determines fast ion type:
! Fokker-Planck modeled RF fast ions,
! not handled by NUBEAM, could be present.

if(...[NUBEAM beam ion]...) itype=1
if(...[NUBEAM fusion product]...) itype=3

if(itype.gt.0) then
isb=index_nbfi(Z(isi),A(isi),itype) ! get NUBEAM’s specie index

! all arguments: integer

pinjs(isi) = zpbal%pinjs(isb) ! copy out NUBEAM compound type
pshine(isi) = zpbal%bpshins(isb) ! data members. These are
... ! scalar power balance terms.

endif
enddo

The definitions of the compound data types innbspec.dat are described in Appendix D.
To retrieve the heating profiles, the user code employs:

use nbi_types
type (nbotype_powers) :: zpowers ! declaration of variable

! zpowers, which has Fortran-90
! compound data type nbotype_powers
! and contains ids of all 1-D
! power profiles

...
call nbo_get_powers(zpowers) ! get profile ids

178 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

t

rated
nstruct
article

ries
n

.
exist
ed and,
BEAM

ons
or

fast

fast

, and

of
ated
(NTCC)
BI in
id = zpowers%io_pbi ! interpolate PBI to user grid
call my_xplasma_extractor(id, my_pbi_array, ...)

id = zpowers%io_pbe ! interpolate PBE to user grid
call my_xplasma_extractor(id, my_pbe_array, ...)

In the last lines of this example, the subroutinemy_xplasma_extractor, is a user written routine tha
uses XPLASMA to interpolate the NUBEAM profile data to the caller’s own radial grid inρ, with possible
normalizations or transformations of units applied. The majority of NUBEAM output profiles are integ
particle, power, torque, source or energy density profiles in MKS units. The typical method employed to reco
the local density on the user’s radial grid is to use the XPLASMA module to interpolate the integrated p
profile to the boundaries of the user’s rho grid, and then compute the particle density using

nj = Nj+1/2 − Nj−1/2

dVj

wherenj is the density in the user’s zonej ; Nj±1/2 is the integrated particle profile interpolated to the bounda
of zonej ; and dVj is the volume of zonej . The variableNj±1/2 is computed using the XPLASMA interpolatio
from the corresponding NUBEAM variable.

The NUBEAM module creates several outputs on the irregular 2-D(ρ, θ) grid that is illustrated in Fig. 3
These arrays are transferred from NUBEAM to the XPLASMA module. Although XPLASMA routines
for fetching both the data and a description of the irregular grid, the interfaces are still being develop
consequently, will not be described here. Documentation will be provided in a future release of the NU
module.

The following outputs are defined over the 2-D grid:

(1) volumes of 2-D irregular grid zones;
(2) density profile for each NUBEAM fast ion species;
(3) profile of average fast ion perpendicular energy, for each NUBEAM fast species;
(4) profile of average fast ion parallel energy density, for each NUBEAM fast ion species;
(5) target fusion reaction rates between fast ions and thermal ions for each fusion reaction channel; reacti

involving beam injected ions are counted separately from reactions involving the fusion products, Tritium
Helium-3 ions;

(6) fast-ion–fast-ion fusion reaction rates for each fusion reaction channel;
(7) neutral source profile for each thermal species, as driven by each NUBEAM fast ion species;
(8) charge exchange neutral sink rate estimate for each species of thermal neutrals due to each NUBEAM

ion species;
(9) impact ionization neutral sink rate estimate foreach species of thermal neutrals due to each NUBEAM

ion species;
(10) Monte Carlo summed fast ion distribution function as a function of 2-D grid zone index, velocity pitch

energy, for each NUBEAM fast ion species.

5. Summary

The NUBEAM module, which computes the power deposition and other source profiles that are consequence
Neutral Beam Injection (NBI) in magnetically confined plasmas, has been extracted from the TRANSP integr
modeling code [7–10] and modified to meet the standards of the National Transport Code Collaboration
module library [1,2]. The NUBEAM module provides a comprehensive computation of the effects of N

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 179

ries of
atomic

dule
one
NTCC

BEAM
TRANSP
output,

. All of
es. The
ll
NTCC
AM

into
methods.
ANSP
of the

BI
being

voltage,

rge-

the loss

t source,

on as a

ulti-

uiding

rget

gnostic
tokamak plasmas. The centerpiece of the NUBEAM module is a Monte Carlo computation of the trajecto
neutral atoms and fast ion orbits within the magnetically confined plasma, together with the associated
physics, collisional interactions with the thermal target plasma, and predicted nuclear reaction rates. The mo
includes options to compute the effects of large scale instabilities, such as sawtooth oscillations and fishb
instabilities, as well as the effects of magnetic ripple. All NUBEAM dependencies are resolved within the
library; NUBEAM uses eight other NTCC modules (see Appendix E).

The main challenge encountered with extracting this module was caused by the fact that the original NU
package shared more than one thousand variables that were stored in the large common blocks of the
code. As the NUBEAM code was turned into a module, these variables were organized into 370 input, 365
55 input and output variables, and the remainder as variables that are internal to the NUBEAM module
the input and output variables were organized into publicly defined Fortran-90 compound data structur
interface for these structures is written with a Python-script code generator. Default values are assigned to a
of the input variables in order to minimize the number of variables that have to be set by the user. The
XPLASMA module [1,2] is used to interpolate all of the profiles from the user’s spatial grid to the NUBE
spatial grids and back again. The result of all these changes is the transformation of a large legacy code
a portable, reusable, and well documented module with encapsulated data, physics, and interpolation
Moreover, the NUBEAM module described in this paper has now been introduced back into the TR
code and is used to carry out the NBI computations in the TRANSP code. This has allowed validation
results produced by the NUBEAM module and facilitates future improvements of the treatment of the N
physics in the TRANSP code as well as in other transport codes in which the NUBEAM module is
installed.

Appendix A. Physical elements of the NUBEAM module

The NUBEAM module self-consistently takes into account the following physical processes:

(1) Beamline geometry and beam composition by isotope, with time dependent specification of power,
and energy fractions for each beamline;

(2) Trajectory of neutral atoms passing through the plasma, with deposition of neutral beams and cha
exchange loss and recapture of partially slowed down fast ions;

(3) Guiding center fast ion orbits: trajectories of fast ions within the plasma, including banana orbits and
of the ions to the walls;

(4) Collision operator and thermal plasma source terms: heating rates, momentum sources, curren
particle sources;

(5) Anomalous diffusion of fast ions;
(6) Neutral particle—fast ion reactions: ionization, charge exchange, and a model for multi-step ionizati

result of excitation effects;
(7) Multiple fast ion species including fusion product fast ions treated as separate Monte Carlo species; m

species target plasma;
(8) Effect of magnetic ripple;
(9) Effect of large scale instabilities, such as fishbone instabilities and sawtooth oscillations;

(10) Finite Larmor radius corrections, collisions or losses at the actual particle position, not at the orbit g
center.

(11) Estimates of fusion reaction rates, separated not only by reaction but also by reagent types, e.g., beam–ta
and beam–beam reactions counted separately; and

(12) Numerical estimate of the entire fast ion distribution function, suitable for subsequent use e.g., by dia
simulation models.

180 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

current
Appendix B. NUBEAM module Fortran-90 input structures

Structure Description

1 sys basic system information for Monte Carlo code
2 times start and stop times for the current timestep
3 grid basic grid information
4 beams the beams and the thermal plasma species
5 impurity atomic weight and atomic number of the impurity species
6 minority RF minority species
7 powers beam powers, voltages, and energy fractions (at full, half, and one third energies)
8 fusion fusion products
9 fpp Monte Carlo code support for Fokker-Planck model

10 num numerical controls
11 atomic atomic physics controls
12 collid collision operator controls
13 flr finite Larmor radius corrections
14 saw sawtooth model controls
15 adif description of anomalous diffusion effect
16 ripple description of magnetic ripple effect
17 outcon code output control options
18 fishbone specification of fishbone model
19 box beam-in-box neutral density calculation controls
20 misc miscellaneous options and parameters, such as options for calculation of fast ion driven
21 profiles “XPLASMA IDs” of the profile inputs to the NUBEAM module
22 fusion reaction rate parameters to be included
23 density arrays associated with sawtooth mixing

Appendix C. NUBEAM module Fortran-90 output structures

Structure Description

1 deposition energy and particle deposition profiles
2 n0_fast flux surface averaged fast neutral density profiles
3 trap_fraction fraction of “banana trapped” ions
4 erngfi_output densities and trapping fractions
5 average_energies average parallel and perpendicular energies, average energy
6 excited_states excited states correction profiles (flux surface averaged)
7 mc_statistics statistics that are computed after deposition and before slowing down
8 rotation approximate toroidal angular velocity ofions, before and after sawtooth crash
9 compression heating profiles resulting from compression

10 powers heating profiles inside flux surface
11 currents driven current profiles
12 neutral_sources neutral sources
13 recapture profiles showing processes for recapture of charge exchange fast neutrals
14 neutral_sinks flux surface averaged sink rates for thermal neutral gases
15 sources electron and ion density source profiles
16 fokker_planck profiles related to the collision operator
17 radial_current radial current profiles through boundaries
18 torques torques applied to thermal plasma species
19 hi_z_beams average charge state of orbiting heavy ions forZ > 2
20 power_balance data related to scalar power balance for beam species
21 momentum_balance quantities related to scalar angular momentum balance
22 torque_work power associated with work done by the beam on a rotating target plasma
23 particle_balance information related to fast ion particle balance

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 181

tput
BEAM

out
BEAM

ependent
tails

e

n
iable is

bolic

ire

ries.

files are
Appendix D. Use of Python code generating scripts to build input and output structures

A Python code generator,nbigen.py, is used to maintain the NUBEAM interface and state file input/ou
facility. The use of a code generator makes it much easier to add new input and output options to the NU
module. By using compound data types with defaults, newly added input options can be safely defaulted with
breaking the existing user code. In particular, a new option can be added to NUBEAM, and the updated NU
code distributed, without breaking user implementations that might not use of the new option.

The NUBEAM source is distributed withnbigen.py together with the filenbspec.dat, which is the
NUBEAM module data specification file. Whennbigen.py is run, it reads thenbspec.dat file and uses the
specifications to write interface routines such asnbi_init_sys andnbi_set_sys, as well as NUBEAM’s
internal data modulesnbi_dimensions andnbi_com.

Thenbspec.dat file is important because it defines the actual input and output data for the entire NUBEAM
module and the module’s internal data structures, as well as defining elements of the state of the time-d
NUBEAM calculation. Thenbspec.dat file is well commented, and the user is able to refer to it for many de
of NUBEAM input/output. Those comments in thenbspec.dat file that start with “!” pertain to NUBEAM
data elements; comments that start with “#” pertain tonbspec.dat format and details of the python cod
generator.

Each element of each compound data typeis defined in the data structure filenbspec.dat in lines of the
form:

<data-type>[A][S][code] <name>[(dims,...)] [! comments...]

where<data-type> is a Fortran data type code (R=REAL, D=REAL*8, I=INTEGER, L=LOGICAL), [A] is a
optional indicator that the variable is an array, and [S] is an optional flag that indicates whether the var
used during next timestep by the NUBEAM module and should be saved in the NUBEAM state file,<name> is
the name of variable, and [(dims,. . .)] are optional dimensions of the variable. There is also an optional sym
[code] specification, which indicates a profile subtype and is defined as follows:

[code] Description˜
Indicates a variable such as “average energy” which isnot integrated from the axis. These variables requ
smoothing.̂
Indicates a variable such as “slowing down time” which does not require smoothing.

| Indicates a boundary oriented “flow” variable. Internally these are Monte Carlo sums of flows across bounda
These variables do not require smoothing.

@ Indicates profiles, which specify an enclosed toroidal current as a function of flux surface label. These pro
integrated using the cross-sectional area rather than the volume of plasma flux zones and are smoothed.

As an example of a scalar data definition, the Fortran-90 compound data structurepower_balance contains the
specifications:

DA pinjs(mibs) ! watts
! injected power (or fusion product source power),
! by species.

D pftota ! watts
! grand total power in fusion product source

182 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

ion
pound

h of
e above

ls
the

se
may

led by

(e.g.,

, this
called.
The 1-D profile outputs are similarly declared, but are identifiable by the presence of the array dimensmj,
which is the radial grid dimension used in the NUBEAM module. Thus, for example, the Fortran-90 com
data structurepowers contains:

DA pbe(mj) ! watts
! power to electrons from beam heating
! for electron power balance

DA pbis(mj, mibs) ! watts
! power to ions from fast ion heating, by species

These declarations define a set of XPLASMA output profiles. The corresponding compound data type for eac
these items contains an integer scalar or array which is formed by deleting the radial dimension from th
specifications. For example, in this case:

integer :: id_pbe, id_pbis(mibs)

which are members of a compound Fortran-90 structure of typenbotype_powers. The array dimension symbo
mj andmibs indicate the radialρ grid and the fast ion species indexing, respectively; these are defined near
beginning ofnbspec.dat.

In summary, the code generator reads

nbspec.dat -- NUBEAM i/o and module data specification file
basic data types are:
R -- REAL,
I -- INTEGER,
L -- LOGICAL,
D -- REAL*8,
C*n -- CHARACTER*n.
An instance of each specified item is generated
in NUBEAM’s internal Fortran-90 module; in addition,
input/output items are made members of publicly
declared compound data types used for transfer of
information in and out of the NUBEAM internal module.

and the code generator writes the following NUBEAM input component files:

– nbi_dimensions_mod.f90 andnbi_com_mod.f90. NUBEAM’s internal Fortran-90 modules. The
should not be referenced directly by user code, but they contain copies of comments from nbspec.dat, and
be useful as documentation.

– nbi_types.f90. Public Fortran-90 module defining input/output data structures.
– nbi_alloc.f90. Allocate most NUBEAM data structures based on user specified grid sizes—cal

user after a successfulnbi_set_dims call. . .
– nbi_alloc2.f90. Allocate remainder of NUBEAM data structures based on additional user input

desired number of Monte Carlo particles in simulation). The user does not call this directly.
– nbi_dalloc.f90. Deallocate NUBEAM data structures. Since the NUBEAM simulation has state

should not be done unless all NUBEAM fast ions have thermalized, and NUBEAM is never again to be
– nbi_init.f90. Set defaults for input data structures.

A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184 183

NLY

nsions
. See the

e: see

with
BEAM

section

which
access to

r

nd

nical

EC,
– nbi_set.f90. Pass inputs to NUBEAM. Since NUBEAM assumes state, this is generally done O
ONCE per run per input data structure.

– nbi_get.f90. Fetch current settings of input data structures.
– nbi_update.f90. Update input. Most input data elements are not updatable. For example, array dime

can only be set once at the beginning of a run. Attempts to update non-updatable members are ignored
Inputs section for more details.

– nbi_state_io.f90. Subroutines for NUBEAM state save/restore operations. User callable routin
nbi_states.f90.

– nbi_ascii.f90. ASCII dump of NUBEAM input andoutput quantities,for debugging.
– nbo_get.f90. Retrieve NUBEAM output (into output data structures).

Appendix E. NTCC modules required by the NUBEAM module

The NUBEAM module is a module of the NTCC module library [1,2]. The NUBEAM module together
its driver program and test cases can be downloaded from the NTCC module library web site [2]. The NU
module uses other NTCC modules, which are briefly described below.

– The NTCC PREACT module performs lookups and interpolation of the rate (weighted product of cross-
and velocity) of various charge exchange, ionization, and fusion reactions.

– The NTCC PORTLIB module provides a number of “operating systems support” functions, for
a standard interface is not available: access to the shell, access to command line arguments,
environment variables or previously used logical names, elapsed CPU time, and so on.

– The NTCC XPLASMA module provides astandard representation for plasma MHD equilibria and paramete
profiles. The module includes routines for setting up the equilibrium, profiles, scrape-off region definition and
limiter specification and routines for coordinate transformations.

– The NTCC PSPLINE module contains a collection of Spline and Hermite interpolation tools for 1D, 2D, a
3D datasets on rectilinear grids. The spline routines yield full controlover boundary conditions.

– The NTCC EZCDF module provides an easy interface for netCDF routines.
– The NTCC KDSAW module is the Kadomtsev-style MHD sawtooth “mixing model”.
– The NTCC R8SLATEC module is a library of mathematical subroutines.
– The NTCC RANDOM module is a portable, parallelizable, high quality random number generator.

More detailed information about these modules is available at the NTCC module library web site [2].

References

[1] A. Kritz, et al., The National Transport Code Collaboration module library, Comput. Phys. Comm., 2004, in press.
[2] NTCC module library,http://w3.pppl.gov/NTCC.
[3] K. Miyamoto, Plasma Physics for Nuclear Fusion, MIT Press, Cambridge, MA, 1987.
[4] R.A. Gross, Fusion Energy, Wiley, New York, 1984.
[5] E. Speth, Rep. Prog. Phys. 52 (1989) 57.
[6] L. Hu et al., Power loading on the beamline components and beam divergence on the negative-ion based NBI system for jt-60u, Tech

Report JAERI-Tech 99-057, Japan Atomic Energy Research Institute, 1999.
[7] R.J. Hawryluk, An empirical approach to tokamak transport, in: Physics of Plasmas Close to Thermonuclear Conditions, vol. 1, C

Brussels, 1980, p. 19.
[8] TRANSP home page,http://w3.pppl.gov/transp.
[9] J. Ongena, M. Evrard, D. McCune, Trans. Fusion Tech. 33 (1998) 181.

[10] R.V. Budny, Nucl. Fusion 34 (1994) 1247.

http://w3.pppl.gov/NTCC
http://w3.pppl.gov/transp

184 A. Pankin et al. / Computer Physics Communications 159 (2004) 157–184

ssels,

roc.

les,

-

sik,

1.
[11] R.V. Budny, et al., Phys. Plasmas 7 (1994) 5038.
[12] R.J. Goldston, et al., J. Comput. Phys. 43 (1981) 61.
[13] R.J. Goldston, Basic Physical Processes of Toroidal Fusion Plasmas (Proc. Course and Workshop Varenna, 1985), vol. 1, CEC, Bru

1986.
[14] R.V. Budny, Nucl. Fluids 42 (2002) 1382.
[15] G. Düsing, et al., Fusion Tech. 11 (1987) 163.
[16] C.G. Lister, D.E. Post, R. Goldston, Computer simulation of neutral beam injection into tokamaks using Monte Carlo techniques, in: P

of the 3rd Symposium on Plasma Heating in Toroidal Devices (Varenna, Italy, 1976), Euroatom, 1976, p. 303.
[17] J.A. Rome, J.D. Callen, J.F. Clarke, Nucl. Fusion 14 (1974) 141.
[18] S.E. Attenberger, W.A. Houlberg, S.P. Hirshman, J. Comput. Phys. 72 (1987) 435.
[19] R.K. Janev, W.D. Langer, K. Evans, D.E. Post, Elementary Processes in Hydrogen-Helium Plasmas, Springer-Verlag, Berlin/New York,

1987.
[20] C.F. Barnett, I. Alvarez, C. Cisneros, R.A. Phaneuf, et al., Collisions of H, H2, He and Li atoms and ions with atoms and molecu

Technical Report ORNL-6086/V1, OakRidge National Laboratory, 1990.
[21] R.A. Phaneuf, R.K. Janev, M.S. Pindzola, Collisions of carbon and oxygen ions with electrons, H, H2, and He, Technical Report ORNL

6090/V5, Oak Ridge National Laboratory, 1987.
[22] D. Schultz, P. Krstic, private communication.
[23] R.B. White, M.S. Chance, Phys. Fluids 27 (1984) 2455.
[24] N. Byrne, H. Klein, J. Comput. Phys. 26 (1978) 352.
[25] H.-S. Bosch, Review of data and formulas for fusion cross-sections, Technical Report IPP I/252, Max-Planck-Institut für Plasmaphy

1990.
[26] S. von Goeler, W. Stodiek, N. Sauthoff, Phys. Rev. Lett. 33 (1974) 1201.
[27] K. McGuire, et al., Phys. Rev. Lett. 50 (1983) 891.
[28] R. Kaita, et al., Phys. Fluids B 2 (1990) 1584.
[29] W.W. Heidbrink, G. Sager, Nucl. Fusion 30 (1990) 1015.
[30] ITER Physics Expert Group on Energetic Particles, Heating and Current Drive, ITER Physics Basis Editors, Nucl. Fusion 39 (1999) 247
[31] B. Kadomtsev, Soviet J. Plasma Phys. 1 (1975) 295.
[32] R.B. White, R. Goldston, M.H. Redi, R.V. Budny, Phys. Plasmas 3 (1996) 3043.
[33] R.J. Goldston, R.B. White, A.H. Boozer, Phys. Rev. Lett. 47 (1981) 647.
[34] M.H. Redi, et al., Nucl. Fusion 35 (1995) 1509.
[35] D.R. Mikkelsen, et al., Phys. Plasmas 4 (1997) 3667.
[36] L.L. Lao, H.S. John, R.D. Stambaugh, A.G. Kellman, W. Pfeiffer, Nucl. Fluids 25 (1985) 1611.
[37] T.W. Fredian, J.A. Stillerman, Fusion Engrg. and Design 60 (2002) 229.
[38] W. Davis, P. Roney, T. Carroll, T. Gibney, D. Mastrovito, Fusion Engrg. and Design 60 (2002) 247.

	The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library
	Introduction
	NUBEAM module underlying physics
	Beamline geometry
	Beam deposition
	Fast ion orbits
	Effects of sawtooth oscillations, fishbone instabilities, and magnetic ripple
	Anomalous fast ion diffusion
	Finite Larmor radius adjustment

	Using the NUBEAM module
	Initialization of the NUBEAM module
	Use of the NTCC XPLASMA module
	Running the NUBEAM module in a transport code

	NUBEAM module output
	Summary
	Physical elements of the NUBEAM module
	NUBEAM module Fortran-90 input structures
	NUBEAM module Fortran-90 output structures
	Use of Python code generating scripts to build input and output structures
	NTCC modules required by the NUBEAM module
	References

